COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms

Robert W Malone, Philip Tisdall, Philip Fremont-Smith, Yongfeng Liu, Xi-Ping Huang, Kris M White, Lisa Miorin, Elena Moreno, Assaf Alon, Elise Delaforge, Christopher D Hennecker, Guanyu Wang, Joshua Pottel, Robert V Blair, Chad J Roy, Nora Smith, Julie M Hall, Kevin M Tomera, Gideon Shapiro, Anthony Mittermaier, Andrew C Kruse, Adolfo García-Sastre, Bryan L Roth, Jill Glasspool-Malone, Darrell O Ricke, Robert W Malone, Philip Tisdall, Philip Fremont-Smith, Yongfeng Liu, Xi-Ping Huang, Kris M White, Lisa Miorin, Elena Moreno, Assaf Alon, Elise Delaforge, Christopher D Hennecker, Guanyu Wang, Joshua Pottel, Robert V Blair, Chad J Roy, Nora Smith, Julie M Hall, Kevin M Tomera, Gideon Shapiro, Anthony Mittermaier, Andrew C Kruse, Adolfo García-Sastre, Bryan L Roth, Jill Glasspool-Malone, Darrell O Ricke

Abstract

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.

Keywords: COVID-19; GPCR (G Protein Coupled Receptors); famotidine (PubChem CID: 3325); histamine (H2) receptor; hyperinflammation state; mast cell activating disorder.

Conflict of interest statement

RM, PT, and GS were employed by the companies RW Malone MD LLC, Medical School Companion LLC, and Pharmorx LLC, respectively. In all three cases, their contributions to the work described were voluntary and uncompensated. By joint agreement, no patent rights relating to these findings have been asserted by any of the authors. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Malone, Tisdall, Fremont-Smith, Liu, Huang, White, Miorin, Moreno, Alon, Delaforge, Hennecker, Wang, Pottel, Blair, Roy, Smith, Hall, Tomera, Shapiro, Mittermaier, Kruse, García-Sastre, Roth, Glasspool-Malone and Ricke.

Figures

FIGURE 1
FIGURE 1
Cleavage of ISG15 C-terminal 8 amino acids by SARS-CoV-2 PLpro purified from E. coli. ISG15 was incubated with SARS-CoV-2 PLpro (lanes 3–6). SARS-CoV-2 PLpro was present at 4 nM, ISG15 was present at 10 µM. For lane 4 to 6, famotidine was present at 100 µM, 10 µM and 1 µM respectively. Control was without enzyme (lane 2). Proteins were resolved by 15% SDS-PAGE and revealed by Coomassie blue staining. The molecular weights of the marker proteins are indicated on the left of the gel.
FIGURE 2
FIGURE 2
Famotidine does not directly inhibit SARS-CoV-2 infection. To assess the possibility that famotidine may inhibit SARS-CoV-2 infection by other routes, a Vero E6 cell-based assay was performed to compare median tissue culture infectious doses (TCID50/mL) of famotidine, remdesivir, and hydroxychloroquine. Vero E6 cells were cultured and infected as described in methods and scored for presence or absence of infection using the surrogate of an immunohistochemical stain for cell-associated SARS-CoV-2 NP protein as scored by imaging cytometer. Non-specific cytotoxicity (inverse of viability) was assessed using an MTT assay. As appropriate, infected supernatants were assayed for infectious viral titer using the TCID50 method. Results are displayed as % inhibition of the viral infection Vero E6 cells as a function of tested pharmaceutical, % infected cell viability, pharmaceutical agent concentration necessary to achieve 50% or 90% replication inhibition (IC50, IC90 respectively), and pharmaceutical agent concentration required to yield 10% or 50% reduction in cell viability (CC10, CC50).
FIGURE 3
FIGURE 3
Competition binding curves of Famotidine (blue circles), Cimetidine (red squares), and PB-28 (green triangle), a potent sigma receptor ligand as positive control. (A) [3H](+)-pentazocine competition curves in Expi293 membranes expressing sigma-1. (B) [3H]DTG competition curves in Expi293 membranes expressing sigma-2 (TMEM97).
FIGURE 4
FIGURE 4
Famotidine and cimetidine activity on histamine receptors. Experiments performed in duplicate. (A) Competitive binding dose-response curves for famotidine and cimetidine on four histamine receptors with reference compounds. (B) The partial agonist, famotidine, shows antagonist activity of H2 in the presence of potent endogenous agonist, histamine. (C) Inverse agonism of famotidine and cimetidine on H2, whereas histamine stimulated cAMP production by 20-fold of basal (N = 2). (D) Arrestin recruitment by famotidine (left) and cimetidine (right) upon interaction with histamine receptors.
FIGURE 5
FIGURE 5
Screen for activation of 318 receptors of the GPCR-ome. To test whether famotidine may act via other G-coupled protein receptors (GPCRs) in addition to its activity as an inverse agonist for the histamine H2 receptor, a screening assay method was applied to detect potential agonist activity of famotidine (10 microM final) when interacting with each of the 318 known human GPCRs. Prior surveys with other pharmaceuticals have defined the baseline for non-specific signal in this assay at 3x greater than the corresponding basal signal. GPCRs meeting the screening criteria of >3x baseline are listed. None of these screening signals were verified in follow up studies, yielding the conclusion that famotidine has no agonist activity for other human GPCRs.
FIGURE 6
FIGURE 6
Infiltration of mast cells into the pulmonary parenchyma of SARS-CoV-2 infected African Green monkeys (AGMs). 20× magnification. Toluidine blue stain. RA: right anterior; RM: right middle; RI: right intermediate; RL: right lower; LL: left lower.
FIGURE 7
FIGURE 7
ase Study JM: CXR and Timeline. Famotidine (60 mg PO tid) was started on Day 8 from start of symptoms. It was continued for 30 days. The anosmia and ageusia are still present at Day 50.
FIGURE 8
FIGURE 8
Lung alveolus cell interactions and gas exchange. Schematic diagram illustrating relevant cellular and tissue microanatomy of the pulmonary alveolus. Pulmonary edema results from loss of a regulation of fluid transfer that occurs at several levels in the alveolus, including disrupted capillary wall components, surfactant, Type I and II pneumocytes, as well as the pulmonary pericytes which are a histamine-responsive contractile cell which both synthesize the endothelial basement membrane and regulate blood flow in the precapillary arteriole, the capillary and the postcapillary venule via contraction and relaxation response to histamine and other signaling molecules.
FIGURE 9
FIGURE 9
Human single cell lung gene expression normalized to transcripts per million (TPM) from LunGENS web portal (Du et al., 2015). Single cell lung gene expression patterns from the Dropseq PND1 experiment for angiotensin-converting enzyme 2 (ACE2: black), transmembrane protease, serine 2 (TMPRSS2; orange), and histamine receptors H1 (blue), H2 (green), and H4 (yellow).
FIGURE 10
FIGURE 10
Lung pathology of early COVID-19. Early COVID-19 pulmonary histopathology, illustrating an atypical viral pathology pattern of interstitial and alveolar edema together with alveolar septae which retain normal architecture. Atypical for viral pneumonia, this resection from early in the course of COVID-19 disease lacks inflammation, and the accumulated fluid appears to be a transudate.
FIGURE 11
FIGURE 11
Micro-thrombosis in the pulmonary microvasculature in COVID-19 at autopsy (Magro et al., 2020). There is widening of the alveolar septae by extensive fibrinous occlusion of capillaries (open black arrows). There is alveolar space edema with red blood cell extravasation. Septae show a mild mononuclear infiltrate. Alveolar edema shows neutrophils in proportion to the blood.
FIGURE 12
FIGURE 12
The Natural History of COVID-19. Modified from Oudkerk et al. (2020).

References

    1. Ackermann M., Verleden S. E., Kuehnel M., Haverich A., Welte T., Laenger F., et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383, 120–128. 10.1056/NEJMoa2015432
    1. Afrin L. B., Ackerley M. B., Bluestein L. S., Brewer J. H., Brook J. B., Buchanan A. D., et al. (2020). Diagnosis of mast cell activation syndrome: a global "consensus-2”. Diagnosis (Berl). 10.1515/dx-2020-0005
    1. Alon A., Schmidt H. R., Wood M. D., Sahn J. J., Martin S. F., Kruse A. C. (2017). Identification of the gene that codes for the σ2 receptor. Proc. Natl. Acad. Sci. USA 114 (27), 7160–7165. 10.1073/pnas.1705154114
    1. Alonso N., Zappia C. D., Cabrera M., Davio C. A., Shayo C., Monczor F., et al. (2015). Physiological implications of biased signaling at histamine H2 receptors. Front. Pharmacol. 6, 45. 10.3389/fphar.2015.00045
    1. Alphonsus C. S., Rodseth R. N. (2014). The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69 (7), 777–784. 10.1111/anae.12661
    1. Anson B. J., Chapman M. E., Lendy E. K., Pshenychnyi S., D’Aquila R. T., Satchell K. J. F., et al. (2020). Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs. PREPRINT (Version 1) Available at Research Square. (Accessed May, 2020). 10.21203/-26344/v1
    1. Baez-Santos Y. M., St John S. E., Mesecar A. D. (2015). The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antivir. Res. 115, 21–38. 10.1016/j.antiviral.2014.12.015
    1. Becker B. F., Chappell D., Bruegger D., Annecke T., Jacob M. (2010). Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc. Res. 87 (2), 300–310. 10.1093/cvr/cvq137
    1. Becker S., Pflugbeil C., Groger M., Canis M., Ledderose G. J., Kramer M. F. (2012). Olfactory dysfunction in seasonal and perennial allergic rhinitis. Acta Otolaryngol. 132 (7), 763–768. 10.3109/00016489.2012.656764
    1. Bertaccini G., Coruzzi G., Poli E., Adami M. (1986). Pharmacology of the novel H2 antagonist famotidine: in vitro studies. Agents Actions 19 (3, 4), 180–187. 10.1007/BF01966204
    1. Besnard J., Ruda G. F., Setola V., Abecassis K., Rodriguiz R. M., Huang X. P., et al. (2012). Automated design of ligands to polypharmacological profiles. Nature 492 (7428), 215–220. 10.1038/nature11691
    1. Bissonnette E. Y. (1996). Histamine inhibits tumor necrosis factor alpha release by mast cells through H2 and H3 receptors. Am. J. Respir. Cell Mol Biol. 14 (6), 620–626. 10.1165/ajrcmb.14.6.8652190
    1. Blair R. V., Vaccari M., Doyle-Meyers L. A., Roy C. J., Russell-Lodrigue K., Fahlberg M., et al. (2021). Acute respiratory distress in aged, SARS-CoV-2 infected african green monkeys but not rhesus Macaques. Am. J. Pathol. 191, 274. 10.1016/j.ajpath.2020.10.016
    1. BMJ (2020). Covid-19: four fifths of cases are asymptomatic, China figures indicate. Br. Med. J. 369, 375. 10.1136/bmj.m1375
    1. Borrell B. (2020). New York clinical trial quietly tests heartburn remedy against coronavirus [Online]. Science Magazine. Available at: (Accessed May 17, 2020). 10.1126/science.abc4739
    1. Burde R., Seifert R., Buschauer A., Schultz G. (1989). Histamine inhibits activation of human neutrophils and HL-60 leukemic cells via H2-receptors. Arch. Pharmacol. 340 (6), 671–678. 10.1007/BF00717743
    1. Butterfield J. H. (2020). Survey of mast cell mediator levels from patients presenting with symptoms of mast cell activation. Int. Arch. Allergy. Immunol. 181 (1), 43–50. 10.1159/000503964
    1. Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., et al. (2020). Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy, medRxiv 20, 1132–1140. 10.1101/2020.04.19.20054262
    1. Castells M., Butterfield J. (2019). Mast cell activation syndrome and mastocytosis: initial treatment options and long-term management. J. Allergy Clin. Immunol. Pract. 7 (4), 1097–1106. 10.1016/j.jaip.2019.02.002
    1. CDC (2020). Nterim clinical guidance for management of patients with confirmed coronavirus diseaseCOVID-19) [Online]. Available at: (Accessed May 17, 2020).
    1. Chamberlin T. (1890). The method of multiple working hypotheses. Sci. 15 (366), 92–6. 10.1126/science.ns-15.366.92
    1. Cheung K. S., Hung I. F., Leung W. K. (2020). Association between famotidine use and COVID-19 severity in Hong Kong: a territory-wide study. Gastroenterology. 10.1053/j.gastro.2020.05.098
    1. Clark R. A., Gallin J. I., Kaplan A. P. (1975). The selective eosinophil chemotactic activity of histamine. J. Exp. Med. 142 (6), 1462–1476. 10.1084/jem.142.6.1462
    1. Cohen P. A., Hall L., Johns J. N., Rapoport A. B. (2020). The early natural history of SARS-CoV-2 infection: clinical observations from an urban, ambulatory COVID-19 clinic. Mayo Clin. Proc. 95, 1124. 10.1016/j.mayocp.2020.04.010
    1. Conti P., Caraffa A., Tete G., Gallenga C. E., Ross R., Kritas S. K., et al. (2020). Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J. Biol. Regul. Homeost. Agents 34 (5), 1629–1632. 10.23812/20-2EDIT
    1. Couzin-Frankel J. (2020). The mystery of the pandemic's 'happy hypoxia. Science 368 (6490), 455–456. 10.1126/science.368.6490.455
    1. Daczkowski C. M., Dzimianski J. V., Clasman J. R., Goodwin O., Mesecar A. D., Pegan S. D. (2017). Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J. Mol. Biol. 429 (11), 1661–1683. 10.1016/j.jmb.2017.04.011
    1. Danis K., Epaulard O., Benet T., Gaymard A., Campoy S., Bothelo-Nevers E., et al. (2020). Cluster of coronavirus disease 2019 (Covid-19) in the French alps, 2020. Clin. Infect. Dis. 71 (15), 825–832. 10.1093/cid/ciaa424
    1. Day M. (2020). Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ 368, m1165. 10.1136/bmj.m1165
    1. Di Lorenzo A., Fernandez-Hernando C., Cirino G., Sessa W. C. (2009). Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc. Natl. Acad. Sci. USA 106 (34), 14552–14557. 10.1073/pnas.0904073106
    1. Divoux A., Moutel S., Poitou C., Lacasa D., Veyrie N., Aissat A., et al. (2012). Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 97 (9), E1677–E1685. 10.1210/jc.2012-1532
    1. Du Y., Guo M., Whitsett J. A., Xu Y. (2015). LungGENS': a web-based tool for mapping single-cell gene expression in the developing lung. Thorax 70 (11), 1092–1094. 10.1136/thoraxjnl-2015-207035
    1. Echizen H., Ishizaki T. (1991). Clinical pharmacokinetics of famotidine. Clin. Pharmacokinet. 21 (3), 178–194. 10.2165/00003088-199121030-00003
    1. Eliezer M., Hautefort C., Hamel A.-L., Verillaud B., Herman P., Houdart E., et al. (2020). Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. 146, 674–675. 10.1001/jamaoto.2020.0832
    1. Ezeamuzie C. I., Philips E. (2000). Histamine H(2) receptors mediate the inhibitory effect of histamine on human eosinophil degranulation. Br. J. Pharmacol. 131 (3), 482–488. 10.1038/sj.bjp.0703556
    1. FDA (1986). EPCID® (famotidine) tablets, for oral use [Online]. US Food and Drug Administration, Available at: (Accessed May 17, 2020).
    1. Fidan C., Aydogdu A. (2020). As a potential treatment of COVID-19: Montelukast. Med. Hypotheses 142, 109828. 10.1016/j.mehy.2020.109828
    1. Filatov A., Sharma P., Hindi F., Espinosa P. S. (2020). Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus 12 (3), e7352. 10.7759/cureus.7352
    1. Flamand N., Plante H., Picard S., Laviolette M., Borgeat P. (2004). Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils: involvement of the H2 receptor and cAMP. Br. J. Pharmacol. 141 (4), 552–561. 10.1038/sj.bjp.0705654
    1. Freedberg D. E., Conigliaro J., Wang T. C., Tracey K. J., Callahan M. V., Abrams J. A., et al. (2020). Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology, 159, 1129–1131. 10.1053/j.gastro.2020.05.053
    1. Furukawa N. W., Brooks J. T., Sobel J. (2020). Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg. Infect. Dis. 26 (7). 10.3201/eid2607.201595
    1. Gattinoni L., Chiumello D., Rossi S. (2020). COVID-19 pneumonia: ARDS or not? Crit. Care 24 (1), 154. 10.1186/s13054-020-02880-z
    1. Gespach C., Abita J. P. (1982). Human polymorphonuclear neutrophils. Pharmacological characterization of histamine receptors mediating the elevation of cyclic AMP. Mol. Pharmacol. 21 (1), 78–85.
    1. Giacomelli A., Pezzati L., Conti F., Bernacchia D., Siano M., Oreni L., et al. (2020). Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin. Infect. Dis., 71, 889. 10.1093/cid/ciaa330
    1. Gonzalez-de-Olano D., Alvarez-Twose I., Matito A., Sanchez-Munoz L., Kounis N. G., Escribano L. (2011). Mast cell activation disorders presenting with cerebral vasospasm-related symptoms: a "Kounis-like" syndrome? Int. J. Cardiol. 150 (2), 210–211. 10.1016/j.ijcard.2011.05.007
    1. Gordon D. E., Jang G. M., Bouhaddou M., Xu J., Obernier K., White K. M., et al. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583 (7816), 459–468. 10.1038/s41586-020-2286-9
    1. Grifoni A., Weiskopf D., Ramirez S. I., Mateus J., Dan J. M., Moderbacher C. R., et al. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 187 (7), 15. 10.1016/j.cell.2020.05.015
    1. Guzman M. G., Harris E. (2015). Dengue. Lancet 385 (9966), 453–465. 10.1016/S0140-6736(14)60572-9
    1. Han D., Wei T., Zhang S., Wang M., Tian H., Cheng J., et al. (2016). The therapeutic effects of sodium cromoglycate against influenza A virus H5N1 in mice. Influenza Other Respir. Viruses 10 (1), 57–66. 10.1111/irv.12334
    1. Han Y. S., Chang G. G., Juo C. G., Lee H. J., Yeh S. H., Hsu J. T., et al. (2005). Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. Biochemistry 44 (30), 10349–10359. 10.1021/bi0504761
    1. He G., Sun W., Fang P., Huang J., Gamber M., Cai J., et al. (2020). The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou. J. Med. Virol., 92, 1761–1763. 10.1002/jmv.25861
    1. Hogan R. B., Hogan R. B., Cannon T., Rappai M., Studdard J., Paul D., et al. (2020). Dual-histamine receptor blockade with cetirizine - famotidine reduces pulmonary symptoms in COVID-19 patients. Pulm. Pharmacol. Ther. 63, 10.1016/j.pupt.2020.101942
    1. Hu Z., Song C., Xu C., Jin G., Chen Y., Xu X., et al. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 63 (5), 706–711. 10.1007/s11427-020-1661-4
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223), 497–506. 10.1016/S0140-6736(20)30183-5
    1. Irannejad R., von Zastrow M. (2014). GPCR signaling along the endocytic pathway. Curr. Opin. Cell Biol 27, 109–116. 10.1016/j.ceb.2013.10.003
    1. Jackson S. P., Darbousset R., Schoenwaelder S. M. (2019). Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133 (9), 906–918. 10.1182/blood-2018-11-882993
    1. Janowitz T., Gablenz E., Pattinson D., Wang T. C., Conigliaro J., Tracey K., et al. (2020). Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut, 69, 1592. 10.1136/gutjnl-2020-321852
    1. Jean-Charles P. Y., Kaur S., Shenoy S. K. (2017). G protein-coupled receptor signaling through beta-arrestin-dependent mechanisms. J. Cardiovasc. Pharmacol. 70 (3), 142–158. 10.1097/FJC.0000000000000482
    1. Ki M., Task Force for -nCo V. (2020). Epidemiologic characteristics of early cases with 2019 novel coronavirus (2019-nCoV) disease in Korea. Epidemiol. Health 42, e2020007. 10.4178/epih.e2020007
    1. Kounis N. G. (2016). Kounis syndrome: an update on epidemiology, pathogenesis, diagnosis and therapeutic management. Clin. Chem. Lab. Med. 54 (10), 1545–1559. 10.1515/cclm-2016-0010
    1. Kounis N. G., Koniari I., Tzanis G., Soufras G. D., Velissaris D., Hahalis G. (2020). Anaphylaxis-induced atrial fibrillation and anesthesia: pathophysiologic and therapeutic considerations. Ann. Card. Anaesth. 23 (1), 1–6. 10.4103/aca.ACA_100_19
    1. Kritas S., Ronconi G., Caraffa A., Gallenga C., Ross R., Conti P. (2019). Mast cells contribute to coronavirus-induced inflammation: new anti-inflammatory strategy. J. Biol. Regul. Homeost. Agents 34. 9–14. 10.23812/20-Editorial-Kritas
    1. Kroeze W. K., Sassano M. F., Huang X. P., Lansu K., McCorvy J. D., Giguere P. M., et al. (2015). PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22 (5), 362–369. 10.1038/nsmb.3014
    1. Krystel-Whittemore M., Dileepan K. N., Wood J. G. (2015). Mast cell: a multi-functional master cell. Front Immunol. 6, 620. 10.3389/fimmu.2015.00620
    1. Lai C. C., Liu Y. H., Wang C. Y., Wang Y. H., Hsueh S. C., Yen M. Y., et al. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J. Microbiol. Immunol. Infect., 53, 404–412. 10.1016/j.jmii.2020.02.012
    1. Lechien J. R., Chiesa-Estomba C. M., De Siati D. R., Horoi M., Le Bon S. D., Rodriguez A., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol., 277, 2251. 10.1007/s00405-020-05965-1
    1. Lin J. H., Chremos A. N., Kanovsky S. M., Schwartz S., Yeh K. C., Kann J. (1987). Effects of antacids and food on absorption of famotidine. Br. J. Clin. Pharmacol. 24 (4), 551–553. 10.1111/j.1365-2125.1987.tb03211.x
    1. Lin J. H. (1991). Pharmacokinetic and pharmacodynamic properties of histamine H2-receptor antagonists. Relationship between intrinsic potency and effective plasma concentrations. Clin. Pharmacokinet. 20 (3), 218–236. 10.2165/00003088-199120030-00004
    1. Lindner H. A., Fotouhi-Ardakani N., Lytvyn V., Lachance P., Sulea T., Menard R. (2005). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79 (24), 15199–15208. 10.1128/JVI.79.24.15199-15208.2005
    1. Lippert U., Artuc M., Grutzkau A., Babina M., Guhl S., Haase I., et al. (2004). Human skin mast cells express H2 and H4, but not H3 receptors. J. Invest. Dermatol. 123 (1), 116–123. 10.1111/j.0022-202X.2004.22721.x
    1. Long B., Brady W. J., Koyfman A., Gottlieb M. (2020). Cardiovascular complications in COVID-19. Am. J. Emerg. Med., 38, 1504. 10.1016/j.ajem.2020.04.048
    1. Luo T., Chen B., Zhao Z., He N., Zeng Z., Wu B., et al. (2013). Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res. Cardiol. 108 (3), 342. 10.1007/s00395-013-0342-4
    1. Magro C., Mulvey J. J., Berlin D., Nuovo G., Salvatore S., Harp J., et al. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 220, 1–13. 10.1016/j.trsl.2020.04.007
    1. Mahmud E., Dauerman H. L., Welt F. G., Messenger J. C., Rao S. V., Grines C., et al. (2020). Management of acute myocardial infarction during the COVID-19 pandemic. J. Am. Coll. Cardiol., 76, 1375. 10.1016/j.jacc.2020.04.039
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol. 77, 683–690. 10.1001/jamaneurol.2020.1127
    1. Marone G., Columbo M., Triggiani M., Vigorita S., Formisano S. (1986). Forskolin inhibits the release of histamine from human basophils and mast cells. Agents Actions 18 (1-2), 96–99. 10.1007/BF01987993
    1. Marone G., Granata F., Spadaro G., Genovese A., Triggiani M. (2003). The histamine-cytokine network in allergic inflammation. J. Allergy Clin. Immunol. 112 (4 Suppl), S83–88. 10.1016/s0091-6749(03)01881-5
    1. Mather J. J. F., Seip R. L., McKay R. G. (2020). Impact of famotidine use on clinical outcomes of hospitalized patients with COVID-19. Am. J. Gastroenterol., 115, 1617. 10.14309/ajg.0000000000000832
    1. McGonagle D., O'Donnell J. S., Sharif K., Emery P., Bridgewood C. (2020). Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2 (7), e437–e445. 10.1016/S2665-9913(20)30121-1
    1. Merad M., Martin J. J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355. 10.1038/s41577-020-0331-4
    1. Mielech A. M., Chen Y., Mesecar A. D., Baker S. C. (2014). Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus. Res. 194, 184–190. 10.1016/j.virusres.2014.01.025
    1. Mikawa K., Akamatsu H., Nishina K., Shiga M., Maekawa N., Obara H., et al. (1999). The effects of cimetidine, ranitidine, and famotidine on human neutrophil functions. Anesth. Analg. 89 (1), 218–224. 10.1097/00000539-199907000-00040
    1. Mizumoto K., Kagaya K., Zarebski A., Chowell G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 25 (10), 180. 10.2807/1560-7917.ES.2020.25.10.2000180
    1. Mongkolsapaya J., Dejnirattisai W., Xu X. N., Vasanawathana S., Tangthawornchaikul N., Chairunsri A., et al. (2003). Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9 (7), 921–927. 10.1038/nm887
    1. Motta Junior J. D. S., Miggiolaro A., Nagashima S., de Paula C. B. V., Baena C. P., Scharfstein J., et al. (2020). Mast cells in alveolar septa of COVID-19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front Immunol. 11, 574862. 10.3389/fimmu.2020.574862
    1. Nelson A., Berkestedt I., Schmidtchen A., Ljunggren L., Bodelsson M. (2008). Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30 (6), 623–627. 10.1097/SHK.0b013e3181777da3
    1. Nicolai L., Leunig A., Brambs S., Kaiser R., Weinberger T., Weigand M., et al. (2020). Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 142 (12), 1176–1189. 10.1161/CIRCULATIONAHA.120.048488
    1. Okayama Y., Benyon R. C., Lowman M. A., Church M. K. (1994). In vitro effects of H1-antihistamines on histamine and PGD2 release from mast cells of human lung, tonsil, and skin. Allergy 49 (4), 246–253. 10.1111/j.1398-9995.1994.tb02657.x
    1. Oudkerk M., Buller H. R., Kuijpers D., van Es N., Oudkerk S. F., McLoud T. C., et al. (2020). Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19 Report of the National Institute for Public Health of the Netherlands. Radiology 297 (1), E216–E222. 10.1148/radiol.2020201629
    1. Pan X., Chen D., Xia Y., Wu X., Li T., Ou X., et al. (2020). Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect. Dis. 20 (4), 410–411. 10.1016/S1473-3099(20)30114-6
    1. Panigada M., Bottino N., Tagliabue P., Grasselli G., Novembrino C., Chantarangkul V., et al. (2020). Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 18, 1738–1740. 10.1111/jth.14850
    1. Panula P., Chazot P. L., Cowart M., Gutzmer R., Leurs R., Liu W. L., et al. (2015). International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol. Rev. 67 (3), 601–655. 10.1124/pr.114.010249
    1. Qureshi A. I., Abd-Allah F., Alsenani F., Aytac E., Borhani-Haghighi A., Ciccone A., et al. (2020). Management of acute ischemic stroke in patients with COVID-19 infection: report of an international panel. Int. J. Stroke 15, 540–554. 10.1177/1747493020923234
    1. Rabier M., Damon M., Chanez P., Mencia-Huerta J. M., Braquet P., Bousquet J., et al. (1989). Inhibition by histamine of platelet-activating-factor-induced neutrophil chemotaxis in bronchial asthma. Int. Arch. Allergy Appl. Immunol. 89 (2, 3), 314–317. 10.1159/000234967
    1. Radermecker C., Detrembleur N., Guiot J., Cavalier E., Henket M., d'Emal C., et al. (2020). Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 217 (12), 1012. 10.1084/jem.20201012
    1. Ranucci M., Ballotta A., Di Dedda U., Bayshnikova E., Dei Poli M., Resta M., et al. (2020). The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost., 18, 1747–1751. 10.1111/jth.14854
    1. Redoni M., Yacoub S., Rivino L., Giacobbe D. R., Luzzati R., Di Bella S. (2020). Dengue: status of current and under-development vaccines. Rev. Med. Virol. 30, e2101. 10.1002/rmv.2101
    1. Reher T. M., Brunskole I., Neumann D., Seifert R. (2012). Evidence for ligand-specific conformations of the histamine H(2)-receptor in human eosinophils and neutrophils. Biochem. Pharmacol. 84 (9), 1174–1185. 10.1016/j.bcp.2012.08.014
    1. Samimagham H. R., Hassani Azad M., Haddad M., Arabi M., Hooshyar D., KazemiJahromi M. (2020). The Efficacy of Famotidine in improvement of outcomes in Hospitalized COVID-19 Patients: a structured summary of a study protocol for a randomised controlled trial. Trials 21 (1), 848. 10.1186/s13063-020-04773-6
    1. Schmidt H. R., Zheng S., Gurpinar E., Koehl A., Manglik A., Kruse A. C. (2016). Crystal structure of the human σ1 receptor. Nature 532 (7600), 527–530. 10.1038/nature17391
    1. Schweitzer W., Ruder T., Baumeister R., Bolliger S., Thali M., Meixner E., et al. (2020). Implications for forensic death investigations from first Swiss post-mortem CT in a case of non-hospital treatment with COVID-19. Forensic Imaging 21, 200378. 10.1016/j.fri.2020.200378
    1. Scola A. M., Chong L. K., Suvarna S. K., Chess-Williams R., Peachell P. T. (2004). Desensitisation of mast cell beta2-adrenoceptor-mediated responses by salmeterol and formoterol. Br. J. Pharmacol. 141 (1), 163–171. 10.1038/sj.bjp.0705599
    1. Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., et al. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 20 (4), 425–434. 10.1016/S1473-3099(20)30086-4
    1. Shoaibi A., Fortin S., Weinstein R., Berlin J., Ryan P. (2020). Comparative effectiveness of famotidine in hospitalized COVID-19 patients. Am J Gastroenterol., 2023. 10.1101/2020.09.23.20199463
    1. Somogyi A., Gugler R. (1983). Clinical pharmacokinetics of cimetidine. Clin. Pharmacokinet. 8 (6), 463–495. 10.2165/00003088-198308060-00001
    1. Stauch B., Johansson L. C., McCorvy J. D., Patel N., Han G. W., Huang X. P., et al. (2019). Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 569 (7755), 284–288. 10.1038/s41586-019-1141-3
    1. Suthar M. S., Zimmerman M., Kauffman R., Mantus G., Linderman S., Vanderheiden A., et al. (2020). Rapid generation of neutralizing antibody responses in COVID-19 patients. medRxiv 1 (3), 100040. 10.1101/2020.05.03.20084442
    1. Swatek K. N., Aumayr M., Pruneda J. N., Visser L. J., Berryman S., Kueck A. F., et al. (2018). Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proc. Natl. Acad. Sci. USA 115 (10), 2371–2376. 10.1073/pnas.1710617115
    1. Theoharides T. C., Tsilioni I., Ren H. (2019). Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev. Clin. Immunol. 15 (6), 639–656. 10.1080/1744666X.2019.1596800
    1. Tian S., Hu N., Lou J., Chen K., Kang X., Xiang Z., et al. (2020a). Characteristics of COVID-19 infection in Beijing. J. Infect. 80 (4), 401–406. 10.1016/j.jinf.2020.02.018
    1. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S. Y. (2020b). Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 15 (5), 700–704. 10.1016/j.jtho.2020.02.010
    1. Tomera KM M. R., Kittah J. K. (2020a). Brief report: rapid clinical recovery from severe COVID-19 with high dose famotidine high dose celecoxib adjuvant therapy. Enliven. Pharmacovigil. Drug Saf. 6 (3).
    1. Tomera KM M. R., Kittah J. K. (2020b). Hospitalized COVID-19 patients treated with celecoxib and high dose famotidine adjuvant therapy SHOW significant clinical responses. SSRN.
    1. Vabret N., Britton G. J., Gruber C., Hegde S., Kim J., Kuksin M., et al. (2020). Immunology of COVID-19: current state of the science. Immunity 52, 910–941. 10.1016/j.immuni.2020.05.002
    1. Wadee A. A., Anderson R., Sher R. (1980). In vitro effects of histamine on eosinophil migration. Int. Arch. Allergy Appl. Immunol. 63 (3), 322–329. 10.1159/000232643
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA., 323, 1061–1069. 10.1001/jama.2020.1585
    1. Weiler C. R. (2020). Mast cell activation syndrome: tools for diagnosis and differential diagnosis. J. Allergy Clin. Immunol. Pract. 8 (2), 498–506. 10.1016/j.jaip.2019.08.022
    1. Weinstock L. B., Pace L. A., Rezaie A., Afrin L. B., Molderings G. J. (2020). Mast cell activation syndrome: a primer for the gastroenterologist. Dig. Dis. Sci. 10.1007/s10620-020-06264-9
    1. WHO (2020). Coronavirus disease 2019 (COVID-19) Situation. Report – 46.
    1. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., et al. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin B 10, 766. 10.1016/j.apsb.2020.02.008
    1. Wu D., Wu T., Liu Q., Yang Z. (2020). The SARS-CoV-2 outbreak: what we know. Int. J. Infect. Dis. 94, 44–48. 10.1016/j.ijid.2020.03.004
    1. Wu Z., McGoogan J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 323, 1239. 10.1001/jama.2020.2648
    1. Yeh K. C., Chremos A. N., Lin J. H., Constanzer M. L., Kanovsky S. M., Hucker H. B., et al. (1987). Single-dose pharmacokinetics and bioavailability of famotidine in man. Results of multicenter collaborative studies. Biopharm. Drug Dispos. 8 (6), 549–560. 10.1002/bdd.2510080606
    1. Yeramaneni S., Doshi P., Sands K., Cooper M., Kurbegov D., Fromell G. (2020). Famotidine use is not associated with 30-day mortality: a coarsened exact match study in 7158 hospitalized COVID-19 patients from a large Healthcare system. Gastroenterology 160, 919–921. 10.1053/j.gastro.2020.10.011
    1. Zeng Z., Xu L., Xie X.-y., Yan H.-l., Xie B.-j., Xu W.-z., et al. (2020). Pulmonary pathology of early phase COVID-19 pneumonia in a patient with a benign lung lesion. Histopathology.77 (5), 823–831. 10.1111/his.14138
    1. Zhang T., Finn D. F., Barlow J. W., Walsh J. J. (2016). Mast cell stabilisers. Eur. J. Pharmacol. 778, 158–168. 10.1016/j.ejphar.2015.05.071
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (8), 727–733. 10.1056/NEJMoa2001017
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., et al. (2020). SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382 (12), 1177–1179. 10.1056/NEJMc2001737
    1. Zwickl H., Zwickl-Traxler E., Pecherstorfer M. (2019). Is neuronal histamine signaling involved in cancer cachexia? Implications and perspectives. Front Oncol. 9, 1409. 10.3389/fonc.2019.01409

Source: PubMed

3
Abonnieren