Stroke as the First Manifestation of Atrial Fibrillation

Jussi Jaakkola, Pirjo Mustonen, Tuomas Kiviniemi, Juha E K Hartikainen, Antti Palomäki, Päivi Hartikainen, Ilpo Nuotio, Antti Ylitalo, K E Juhani Airaksinen, Jussi Jaakkola, Pirjo Mustonen, Tuomas Kiviniemi, Juha E K Hartikainen, Antti Palomäki, Päivi Hartikainen, Ilpo Nuotio, Antti Ylitalo, K E Juhani Airaksinen

Abstract

Atrial fibrillation may remain undiagnosed until an ischemic stroke occurs. In this retrospective cohort study we assessed the prevalence of ischemic stroke or transient ischemic attack as the first manifestation of atrial fibrillation in 3,623 patients treated for their first ever stroke or transient ischemic attack during 2003-2012. Two groups were formed: patients with a history of atrial fibrillation and patients with new atrial fibrillation diagnosed during hospitalization for stroke or transient ischemic attack. A control group of 781 patients with intracranial hemorrhage was compiled similarly to explore causality between new atrial fibrillation and stroke. The median age of the patients was 78.3 [13.0] years and 2,009 (55.5%) were women. New atrial fibrillation was diagnosed in 753 (20.8%) patients with stroke or transient ischemic attack, compared to 15 (1.9%) with intracranial hemorrhage. Younger age and no history of coronary artery disease or other vascular diseases, heart failure, or hypertension were the independent predictors of new atrial fibrillation detected concomitantly with an ischemic event. Thus, ischemic stroke was the first clinical manifestation of atrial fibrillation in 37% of younger (<75 years) patients with no history of cardiovascular diseases. In conclusion, atrial fibrillation is too often diagnosed only after an ischemic stroke has occurred, especially in middle-aged healthy individuals. New atrial fibrillation seems to be predominantly the cause of the ischemic stroke and not triggered by the acute cerebrovascular event.

Conflict of interest statement

the authors of this manuscript have the following competing interests: Pirjo Mustonen received lecture fees from Orion, Boehringer Ingelheim, Bayer, Pfizer, Bristol-Myers Squibb, Sanofi-Aventis and Leo Pharma, and membership of the advisory boards for Boehringer Ingelheim, Bayer, Pfizer, Bristol-Myers Squibb and Leo Pharma. Tuomas Kiviniemi received grants from the Finnish Foundation for Cardiovascular Research, and lectures fees from Bayer, Boehringer Ingelheim, BMS/Pfizer, AstraZeneca and St Jude Medical. K.E. Juhani Airaksinen received grants from the Finnish Foundation for Cardiovascular Research, and lecture fees from Astra Zeneca, Boehringer Ingelheim, Cardiome, MSD, Novartis and Pfizer. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. New AF diagnoses at the…
Fig 1. New AF diagnoses at the time of ischemic stroke according to age and cardiovascular diseases.
Cardiovascular diseases include coronary artery disease, other vascular diseases, congestive heart failure and hypertension. Cardiovascular disease: N = 2,271 (

Fig 2. New AF diagnoses at the…

Fig 2. New AF diagnoses at the time of ischemic stroke according to CHA 2…

Fig 2. New AF diagnoses at the time of ischemic stroke according to CHA2DS2-VASc score.
CHA2DS2-VASc score is calculated at the time of the ischemic event and scoring does not include the current event. N = 2,914 (score 0: N = 38; score 1: N = 64; score 2: N = 127; score 3: N = 155; score 4: N = 163; score 5: N = 64; score 6: N = 21; score 7: N = 5). Abbreviations: AF, atrial fibrillation.

Fig 3. First AF diagnoses according to…

Fig 3. First AF diagnoses according to temporal distance from first ischemic event.

The mean…

Fig 3. First AF diagnoses according to temporal distance from first ischemic event.
The mean number of first AF diagnoses per one week is presented according to temporal distance from the first ischemic event. Ischemic stroke/TIA has occurred at time point zero. Negative values portray time before the event and positive values time after the event. Timing could not be reliably classified in 740 patients with a long history of AF: N = 2,605.
Fig 2. New AF diagnoses at the…
Fig 2. New AF diagnoses at the time of ischemic stroke according to CHA2DS2-VASc score.
CHA2DS2-VASc score is calculated at the time of the ischemic event and scoring does not include the current event. N = 2,914 (score 0: N = 38; score 1: N = 64; score 2: N = 127; score 3: N = 155; score 4: N = 163; score 5: N = 64; score 6: N = 21; score 7: N = 5). Abbreviations: AF, atrial fibrillation.
Fig 3. First AF diagnoses according to…
Fig 3. First AF diagnoses according to temporal distance from first ischemic event.
The mean number of first AF diagnoses per one week is presented according to temporal distance from the first ischemic event. Ischemic stroke/TIA has occurred at time point zero. Negative values portray time before the event and positive values time after the event. Timing could not be reliably classified in 740 patients with a long history of AF: N = 2,605.

References

    1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22: 983–988.
    1. Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta-analysis. Ann Intern Med. 1999;131: 492–501.
    1. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366: 120–129. 10.1056/NEJMoa1105575
    1. Engdahl J, Andersson L, Mirskaya M, Rosenqvist M. Stepwise screening of atrial fibrillation in a 75-year-old population: Implications for stroke prevention. Circulation. 2013;127: 930–937. 10.1161/CIRCULATIONAHA.112.126656
    1. Roche F, Gaspoz JM, Da Costa A, Isaaz K, Duverney D, Pichot V, et al. Frequent and prolonged asymptomatic episodes of paroxysmal atrial fibrillation revealed by automatic long-term event recorders in patients with a negative 24-Hour Holter. Pacing Clin Electrophysiol. 2002;25: 1587–1593.
    1. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32: 2735–2740.
    1. Sanna T, Diener HC, Passman RS, Bernstein RA, Morillo CA, Rymer MM, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370: 2478–2486. 10.1056/NEJMoa1313600
    1. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370: 2467–2477. 10.1056/NEJMoa1311376
    1. Palomäki A, Mustonen P, Hartikainen JEK, Nuotio I, Kiviniemi T, Ylitalo A, et al. Strokes after cardioversion of atrial fibrillation—the FibStroke study. Int J Cardiol. 2016;203: 269–273. 10.1016/j.ijcard.2015.10.168
    1. Palomäki A, Mustonen P, Hartikainen JEK, Nuotio I, Kiviniemi T, Ylitalo A, et al. Underuse of anticoagulation in stroke patients with atrial fibrillation—the FibStroke Study. Eur J Neurol. 2016;23: 133–139. 10.1111/ene.12820
    1. Airaksinen KEJ, Grönberg T, Nuotio I, Nikkinen M, Ylitalo A, Biancari F, et al. Thromboembolic complications after cardioversion of acute atrial fibrillation: the FinCV (Finnish CardioVersion) study. J Am Coll Cardiol. 2013;62: 1187–1192. 10.1016/j.jacc.2013.04.089
    1. Nuotio I, Hartikainen JE, Grönberg T, Biancari F, Airaksinen KEJ. Time to cardioversion for acute atrial fibrillation and thromboembolic complications. JAMA. 2014;312: 647–649. 10.1001/jama.2014.3824
    1. Kiviniemi T, Airaksinen KEJ, Rubboli A, Biancari F, Valencia J, Lip GY, et al. Bridging therapy with low molecular weight heparin in patients with atrial fibrillation undergoing percutaneous coronary intervention with stent implantation: The AFCAS study. Int J Cardiol. 2015;183: 105–110. 10.1016/j.ijcard.2015.01.056
    1. Lin HJ, Wolf PA, Benjamin EJ, Belanger AJ, D’Agostino RB. Newly diagnosed atrial fibrillation and acute stroke. The Framingham study. Stroke. 1995;26: 1527–1530.
    1. Vingerhoets F, Bogousslavsky J, Regli F, Van Melle G. Atrial fibrillation after acute stroke. Stroke. 1993;24: 26–30.
    1. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation pathophysiology and therapy. Circ Res. 2014;114: 1500–1515. 10.1161/CIRCRESAHA.114.303772
    1. Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA, et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104: 2886–2891.
    1. González Toledo ME, Klein FR, Riccio PM, Cassará FP, Muñoz Giacomelli F, Racosta JM, et al. Atrial fibrillation detected after acute ischemic stroke: evidence supporting the neurogenic hypothesis. Stroke Cerebrovasc Dis. 2013;22: e486–e491.
    1. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke. 2016;47: 895–900. 10.1161/STROKEAHA.115.012004
    1. Savelieva I, Camm AJ. Clinical relevance of silent atrial fibrillation: prevalence, prognosis, quality of life, and management. J Interv Card Electrophysiol. 2000;4: 369–382.
    1. Boriani G, Laroche C, Diemberger I, Fantecchi E, Popescu MI, Rasmussen LH, et al. Asymptomatic atrial fibrillation: clinical correlates, management, and outcomes in the EORP-AF Pilot General Registry. Am J Med. 2015;128: 509–518. 10.1016/j.amjmed.2014.11.026
    1. Page RL, Wilkinson WE, Clair WK, McCarthy EA, Pritchett EL. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation. 1994;89: 224–227.
    1. Virtanen R, Kryssi V, Vasankari T, Salminen M, Kivelä SL, Airaksinen KEJ. Self-detection of atrial fibrillation in an aged population: the LietoAF Study. Eur J Prev Cardiol. 2014;21: 1437–1442. 10.1177/2047487313494041
    1. Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129: 2094–2099. 10.1161/CIRCULATIONAHA.113.007825
    1. Sund R. Quality of the Finnish Hospital Discharge Register: a systematic review. Scand J Public Health. 2012;40: 505–515. 10.1177/1403494812456637

Source: PubMed

3
Abonnieren