Role of inflammatory markers in Takayasu arteritis disease monitoring

Timothy E O'Connor, Haley E Carpenter, Sharatchandra Bidari, Michael F Waters, Vishnumurthy Shushrutha Hedna, Timothy E O'Connor, Haley E Carpenter, Sharatchandra Bidari, Michael F Waters, Vishnumurthy Shushrutha Hedna

Abstract

Background: Takayasu arteritis (TA) is an idiopathic large-vessel vasculitis that can result in significant morbidity and mortality secondary to progressive stenosis and occlusion. Monitoring disease progression is crucial to preventing relapse, but is often complicated by the lack of clinical symptoms in the setting of active disease. Although acute phase reactants such as ESR and CRP are generally used as an indicator of inflammation and disease activity, mounting evidence suggests that these markers cannot reliably distinguish active from inactive TA.

Case presentation: We report a 24-year-old Hispanic female with a 5-year history of TA who presented with stroke-like symptoms and evidence of left MCA occlusion on imaging, despite a history of decreasing inflammatory markers. CTA revealed complete occlusion of the left common carotid artery, left subclavian, and left MCA from their origins. It also revealed a striking compensatory circulation supplying the left anterior circulation as well as the left subclavian as a response to progressive stenosis.

Conclusion: Monitoring ESR and CRP levels alone may not be a reliable method to evaluate disease progression in patients with TA, and should be taken in context with both patient's clinical picture and the imaging. We recommend that serial imaging be performed regularly in the setting of active disease to monitor progression and allow for immediate therapy in response to evidence of disease advancement, with a relaxation of the imaging interval once the disease is presumed inactive.

Figures

Figure 1
Figure 1
ESR and CRP values over timespan of treatment.
Figure 2
Figure 2
CTAs three months before CVA. Oblique lateral MPR view CT angiogram of the neck showing a thrombosed left common carotid artery (LCCA) with a high-grade stenosis at the origin of the common carotid, 1 cm in length (A). Transverse CTA just above the origin of the great vessels revealing complete occlusion of the left proximal subclavian artery (LSA) (B), with flow to the distal left subclavian artery provided by the left vertebral artery, indicative of subclavian steal (C).
Figure 3
Figure 3
CTA of the neck immediately following CVA. Anterior (A) and lateral (B) views of a CT angiogram of the neck demonstrating thrombosis of the proximal and mid left common carotid artery (arrows).
Figure 4
Figure 4
Subtracted 3D CT angiogram following CVA. Oblique view showing high-grade stenosis of left MCA with M2 M3 branches opacified by retrograde flow through leptomeningeal collaterals (A). Neither posterior communicating artery (A) nor anterior communicating artery (B) visible upon imaging in oblique and AP views, respectively.
Figure 5
Figure 5
Brain CT imaging post CVA. Brain CT showing completed infarct in left middle cerebral artery territory affecting the left basal ganglia and left insular cortex. Cytotoxic edema present (A). CT perfusion shows increased time to peak (B), reduced cerebral blood volume (C) and reduced cerebral blood flow (D) in the core left MCA territory.
Figure 6
Figure 6
Imaging from 6 months following initial acute CVA. Brain CT showing encephalomalacia related to the previous infarct of the left basal ganglia and left insular cortex (left MCA territory). (A) Transverse slice through neck showing complete occlusion of left common carotid artery (B). Subtracted 3D CT angiogram showing a complete lack of flow in left internal carotid artery as well as a recanalization of the previous area of left MCA thrombosis (C).

References

    1. Hall S, Barr W, Lie JT, Stanson AW, Kazmier FJ, Hunder GG. Takayasu arteritis. A study of 32 North American patients. Medicine (Baltimore) 1985;64:89–99.
    1. Sadurska E, Jawniak R, Majewski M, Czekajska-Chehab E. Takayasu arteritis as a cause of arterial hypertension. Case report and literature review. Eur J Pediatr. 2012;171:863–869. doi: 10.1007/s00431-012-1674-z.
    1. Hedna VS, Patel A, Bidari S, Elder M, Hoh BL, Yachnis A, Waters MF. Takayasu’s Arteritis: is it a reversible disease? Case report and literature review. Surg Neurol Int. 2012;3:132. doi: 10.4103/2152-7806.102947.
    1. Castaner E, Alguersuari A, Andreu M, Gallardo X, Spinu C, Mata JM. Imaging findings in pulmonary vasculitis. Semin Ultrasound CT MR. 2012;33:567–579. doi: 10.1053/j.sult.2012.05.001.
    1. Arnaud L, Haroche J, Mathian A, Gorochov G, Amoura Z. Pathogenesis of Takayasu’s arteritis: a 2011 update. Autoimmun Rev. 2011;11:61–67. doi: 10.1016/j.autrev.2011.08.001.
    1. Direskeneli H, Aydin SZ, Merkel PA. Assessment of disease activity and progression in Takayasu’s arteritis. Clin Exp Rheumatol. 2011;29:S86–S91.
    1. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, Hoffman GS. Takayasu arteritis. Ann Intern Med. 1994;120:919–929. doi: 10.7326/0003-4819-120-11-199406010-00004.
    1. Bryl M, Guzinski M, Rabczynski M, Waliszewska-Prosol M, Garcarek J, Adamiec R, Sasiadek M. Imaging difficulties in Takayasu arteritis - case report and review of the literature. Pol J Radiol. 2012;77:67–71. doi: 10.12659/PJR.883633.
    1. Hotchi M. Pathological studies on Takayasu arteritis. Heart Vessels Suppl. 1992;7:11–17. doi: 10.1007/BF01744538.
    1. Mahlmann A, Pfluecke C, Ouda A, Simonis G, Weiss N, Kappert U. Combined immunosuppressive therapy including a TNF-alpha blocker induces remission in a difficult to treat patient with Takayasu arteriitis and coronary involvement. Vasa. 2012;41:451–457. doi: 10.1024/0301-1526/a000236.
    1. Bravo Mancheno B, Perin F, Guez Vazquez Del Rey Mdel M, Garcia Sanchez A, Alcazar Romero PP. Successful tocilizumab treatment in a child with refractory Takayasu arteritis. Pediatrics. 2012;130:e1720–e1724. doi: 10.1542/peds.2012-1384.
    1. Ernst D, Greer M, Stoll M, Meyer-Olson D, Schmidt RE, Witte T. Remission achieved in refractory advanced takayasu arteritis using rituximab. Case Report Rheumatol. 2012;2012:406963.
    1. Yamazaki H, Nanki T, Harigai M, Miyasaka N. Successful treatment of refractory Takayasu arteritis with tacrolimus. J Rheumatol. 2012;39:1487–1488. doi: 10.3899/jrheum.120078.
    1. Unizony S, Stone JH, Stone JR. New treatment strategies in large-vessel vasculitis. Curr Opin Rheumatol. 2013;25:3–9. doi: 10.1097/BOR.0b013e32835b133a.
    1. Keser G, Direskeneli H, Aksu K. Management of Takayasu arteritis: a systematic review. Rheumatology. 2013. [Epub ahead of print]
    1. Arend WP, Michel BA, Bloch DA, Hunder GG, Calabrese LH, Edworthy SM, Fauci AS, Leavitt RY, Lie JT, Lightfoot RW Jr, Masi AT, McShane DJ, Mills JA, Stevens MB, Wallace SL, Zvaifler NJ. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33:1129–34.
    1. Aydin SZ, Yilmaz N, Akar S, Aksu K, Kamali S, Yucel E, Karadag O, Bicakcigil M, Ozer H, Kiraz S, Onen F, Inanc M, Keser G, Akkoc N, Direskeneli H. Assessment of disease activity and progression in Takayasu’s arteritis with Disease Extent Index-Takayasu. Rheumatology (Oxford) 2010;49:1889–93. doi: 10.1093/rheumatology/keq171.
    1. Misra R, Danda D, Rajappa SM, Ghosh A, Gupta R, Mahendranath KM, Jeyaseelan L, Lawrence A, Bacon PA. Development and initial validation of the Indian Takayasu Clinical Activity Score (ITAS2010) Rheumatology (Oxford) 2013;52:1795–801. doi: 10.1093/rheumatology/ket128.
    1. Hoffman GS, Ahmed AE. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from The International Network for the Study of the Systemic Vasculitides (INSSYS) Int J Cardiol. 1998;66(66 Suppl 1):S191–S194. discussion S195.
    1. Salvarani C, Cantini F, Boiardi L, Hunder GG. Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin Exp Rheumatol. 2003;21:S23–8.
    1. Ishihara T, Haraguchi G, Tezuka D, Kamiishi T, Inagaki H, Isobe M. Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ J. 2013;77:477–83. doi: 10.1253/circj.CJ-12-0131.
    1. Tso E, Flamm SD, White RD, Schvartzman PR, Mascha E, Hoffman GS. Takayasu arteritis: utility and limitations of magnetic resonance imaging in diagnosis and treatment. Arthritis Rheum. 2002;46:1634–42. doi: 10.1002/art.10251.
    1. Dagna L, Salvo F, Tiraboschi M, Bozzolo EP, Franchini S, Doglioni C, Manfredi AA, Baldissera E, Sabbadini MG. Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann Intern Med. 2011;155:425–33. doi: 10.7326/0003-4819-155-7-201110040-00005.
    1. Park MC, Lee SW, Park YB, Lee SK. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis. Rheumatology (Oxford) 2006;45:545–8. doi: 10.1093/rheumatology/kei266.
    1. de Souza AW, de Lima CS, Oliveira AC, Machado LS, Pinheiro FA, Hix S, D’Almeida V. Homocysteine levels in Takayasu arteritis – a risk factor for arterial ischemic events. J Rheumatol. 2013;40:303–8. doi: 10.3899/jrheum.121073.
    1. Yilmaz H, Gerdan V, Kozaci D, Solmaz D, Akar S, Can G, Gulcu A, Goktay Y, Sari I, Birlik M, Akkoc N, Onen F. Ghrelin and adipokines as circulating markers of disease activity in patients with Takayasu arteritis. Arthritis Res Ther. 2012;14:R272. doi: 10.1186/ar4120.
    1. Yamada I, Nakagawa T, Himeno Y, Numano F, Shibuya H. Takayasu arteritis: evaluation of the thoracic aorta with CT angiography. Radiology. 1998;209:103–9.
    1. Mavrogeni S, Dimitroulas T, Chatziioannou SN, Kitas G. The role of multimodality imaging in the evaluation of Takayasu arteritis. Semin Arthritis Rheum. 2013;42:401–12. doi: 10.1016/j.semarthrit.2012.07.005.
    1. Budtz-Lilly JW, Paaske W, Thrysoe SA, Andersen G. Takayasu’s arteritis and the utility of magnetic resonance imaging. J Vasc Surg. 2012;56:832. doi: 10.1016/j.jvs.2011.04.050.
    1. Schneeweis C, Schnackenburg B, Stuber M, Berger A, Schneider U, Yu J, Gebker R, Weiss RG, Fleck E, Kelle S. Delayed contrast-enhanced MRI of the coronary artery wall in takayasu arteritis. PLoS One. 2012;7:e50655. doi: 10.1371/journal.pone.0050655.
    1. Yamada I, Nakagawa T, Himeno Y, Kobayashi Y, Numano F, Shibuya H. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging. 2000;11:481–7. doi: 10.1002/(SICI)1522-2586(200005)11:5<481::AID-JMRI3>;2-4.
    1. Pipitone N, Versari A, Salvarani C. Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford) 2008;47:403–8.
    1. Kissin EY, Merkel PA. Diagnostic imaging in Takayasu arteritis. Curr Opin Rheumatol. 2004;16:31–7. doi: 10.1097/00002281-200401000-00007.
    1. Webb M, Chambers A, Adil AL-N, Mason JC, Maudlin L, Rahman L, Frank J. The role of 18 F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging. 2004;31:627–34. doi: 10.1007/s00259-003-1429-1.
    1. Meller J, Grabbe E, Becker W, Vosshenrich R. Value of F-18 FDG hybrid camera PET and MRI in early takayasu aortitis. Eur Radiol. 2003;13:400–5.
    1. Wenger M, Calamia KT, Salvarani C, Moncayo R, Schirmer M. Do we need 18 F-FDG-positron emission tomography as a functional imaging technique for diagnosing large vessel arteritis? Clin Exp Rheumatol. 2003;21:S1–2.
    1. Kusunose K, Yamada H, Tomita N, Nishio S, Niki T, Yamaguchi K, Koshiba K, Yagi S, Taketani Y, Iwase T, Soeki T, Wakatsuki T, Akaike M, Sata M. Serial imaging changes during treatment of Takayasu arteritis with pulmonary artery stenosis. Int J Cardiol. 2011;148:e47–50. doi: 10.1016/j.ijcard.2009.02.036.
    1. Sager S, Yilmaz S, Ozhan M, Halac M, Ergul N, Ciftci H, Cermik TF. F-18 Fdg PET/CT Findings of a Patient with Takayasu Arteritis Before and After Therapy. Mol Imaging Radionucl Ther. 2012;21:32–4. doi: 10.4274/Mirt.021896.

Source: PubMed

3
Abonnieren