Cardiopulmonary resuscitation quality and beyond: the need to improve real-time feedback and physiologic monitoring

Steve Lin, Damon C Scales, Steve Lin, Damon C Scales

Abstract

High-quality cardiopulmonary resuscitation (CPR) has been shown to improve survival outcomes after cardiac arrest. The current standard in studies evaluating CPR quality is to measure CPR process measures-for example, chest compression rate, depth, and fraction. Published studies evaluating CPR feedback devices have yielded mixed results. Newer approaches that seek to optimize CPR by measuring physiological endpoints during the resuscitation may lead to individualized patient care and improved patient outcomes.

Keywords: Cardiopulmonary resuscitation; End-tidal carbon dioxide; Feedback; Near-infrared spectroscopy; Randomized controlled trial.

References

    1. Vahedian-Azimi A, Hajiesmaeili M, Amirsavadkouhi A, et al. Effect of the Cardio First Angel™ device on CPR indices: a randomized controlled clinical trial. Crit Care. 2016;20:147. doi: 10.1186/s13054-016-1296-3.
    1. Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132:S414–35. doi: 10.1161/CIR.0000000000000259.
    1. Hostler D, Everson-Stewart S, Rea TD, et al. Effect of real-time feedback during cardiopulmonary resuscitation outside hospital: prospective, cluster-randomised trial. BMJ. 2011;342:d512. doi: 10.1136/bmj.d512.
    1. Bohn A, Weber TP, Wecker S, et al. The addition of voice prompts to audiovisual feedback and debriefing does not modify CPR quality or outcomes in out of hospital cardiac arrest—a prospective, randomized trial. Resuscitation. 2011;82:257–62. doi: 10.1016/j.resuscitation.2010.11.006.
    1. Perkins GD, Travers AH, Berg RA, et al. Part 3: Adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2015;95:e43–69. doi: 10.1016/j.resuscitation.2015.07.041.
    1. Travers AH, Perkins GD, Berg RA, et al. Part 3: Adult Basic Life Support and Automated External Defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132:S51–83. doi: 10.1161/CIR.0000000000000272.
    1. Efendijev I, Nurmi J, Castren M, Skrifvars MB. Incidence and outcome from adult cardiac arrest occurring in the intensive care unit: a systematic review of the literature. Resuscitation. 2014;85:472–9. doi: 10.1016/j.resuscitation.2013.12.027.
    1. Wallace SK, Abella BS, Becker LB. Quantifying the effect of cardiopulmonary resuscitation quality on cardiac arrest outcome: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2013;6:148–56. doi: 10.1161/CIRCOUTCOMES.111.000041.
    1. Hartmann SM, Farris RW, Di Gennaro JL, Roberts JS. Systematic review and meta-analysis of end-tidal carbon dioxide values associated with return of spontaneous circulation during cardiopulmonary resuscitation. J Intensive Care Med. 2015;30:426–35. doi: 10.1177/0885066614530839.
    1. Sanfilippo F, Serena G, Corredor C, et al. Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2015;94:67–72. doi: 10.1016/j.resuscitation.2015.06.023.
    1. Callaway CW, Soar J, Aibiki M, et al. Part 4: Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132:S84–145. doi: 10.1161/CIR.0000000000000273.
    1. Hunter CL, Silvestri S, Ralls G, Bright S, Papa L. The sixth vital sign: prehospital end-tidal carbon dioxide predicts in-hospital mortality and metabolic disturbances. Am J Emerg Med. 2014;32:160–5. doi: 10.1016/j.ajem.2013.10.049.
    1. Ahn A, Nasir A, Malik H, D’Orazi F, Parnia S. A pilot study examining the role of regional cerebral oxygen saturation monitoring as a marker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest. Resuscitation. 2013;84:1713–6. doi: 10.1016/j.resuscitation.2013.07.026.
    1. Ito N, Nishiyama K, Callaway CW, et al. Noninvasive regional cerebral oxygen saturation for neurological prognostication of patients with out-of-hospital cardiac arrest: a prospective multicenter observational study. Resuscitation. 2014;85:778–84. doi: 10.1016/j.resuscitation.2014.02.012.
    1. Chopra AS, Wong N, Ziegler CP, Morrison LJ. Systematic review and meta-analysis of hemodynamic-directed feedback during cardiopulmonary resuscitation in cardiac arrest. Resuscitation. 2016;101:102–7. doi: 10.1016/j.resuscitation.2016.01.025.

Source: PubMed

3
Abonnieren