Impact of IDH1 and IDH2 mutational subgroups in AML patients after allogeneic stem cell transplantation

Desiree Kunadt, Sebastian Stasik, Klaus H Metzeler, Christoph Röllig, Christoph Schliemann, Philipp A Greif, Karsten Spiekermann, Maja Rothenberg-Thurley, Utz Krug, Jan Braess, Alwin Krämer, Andreas Hochhaus, Sebastian Scholl, Inken Hilgendorf, Tim H Brümmendorf, Edgar Jost, Björn Steffen, Gesine Bug, Hermann Einsele, Dennis Görlich, Cristina Sauerland, Kerstin Schäfer-Eckart, Stefan W Krause, Mathias Hänel, Maher Hanoun, Martin Kaufmann, Bernhard Wörmann, Michael Kramer, Katja Sockel, Katharina Egger-Heidrich, Tobias Herold, Gerhard Ehninger, Andreas Burchert, Uwe Platzbecker, Wolfgang E Berdel, Carsten Müller-Tidow, Wolfgang Hiddemann, Hubert Serve, Matthias Stelljes, Claudia D Baldus, Andreas Neubauer, Johannes Schetelig, Christian Thiede, Martin Bornhäuser, Jan M Middeke, Friedrich Stölzel, A. M. L. Cooperative Group (AMLCG), Study Alliance Leukemia (SAL), Desiree Kunadt, Sebastian Stasik, Klaus H Metzeler, Christoph Röllig, Christoph Schliemann, Philipp A Greif, Karsten Spiekermann, Maja Rothenberg-Thurley, Utz Krug, Jan Braess, Alwin Krämer, Andreas Hochhaus, Sebastian Scholl, Inken Hilgendorf, Tim H Brümmendorf, Edgar Jost, Björn Steffen, Gesine Bug, Hermann Einsele, Dennis Görlich, Cristina Sauerland, Kerstin Schäfer-Eckart, Stefan W Krause, Mathias Hänel, Maher Hanoun, Martin Kaufmann, Bernhard Wörmann, Michael Kramer, Katja Sockel, Katharina Egger-Heidrich, Tobias Herold, Gerhard Ehninger, Andreas Burchert, Uwe Platzbecker, Wolfgang E Berdel, Carsten Müller-Tidow, Wolfgang Hiddemann, Hubert Serve, Matthias Stelljes, Claudia D Baldus, Andreas Neubauer, Johannes Schetelig, Christian Thiede, Martin Bornhäuser, Jan M Middeke, Friedrich Stölzel, A. M. L. Cooperative Group (AMLCG), Study Alliance Leukemia (SAL)

Abstract

Background: The role of allogeneic hematopoietic cell transplantation (alloHCT) in acute myeloid leukemia (AML) with mutated IDH1/2 has not been defined. Therefore, we analyzed a large cohort of 3234 AML patients in first complete remission (CR1) undergoing alloHCT or conventional chemo-consolidation and investigated outcome in respect to IDH1/2 mutational subgroups (IDH1 R132C, R132H and IDH2 R140Q, R172K).

Methods: Genomic DNA was extracted from bone marrow or peripheral blood samples at diagnosis and analyzed for IDH mutations with denaturing high-performance liquid chromatography, Sanger sequencing and targeted myeloid panel next-generation sequencing, respectively. Statistical as-treated analyses were performed using R and standard statistical methods (Kruskal-Wallis test for continuous variables, Chi-square test for categorical variables, Cox regression for univariate and multivariable models), incorporating alloHCT as a time-dependent covariate.

Results: Among 3234 patients achieving CR1, 7.8% harbored IDH1 mutations (36% R132C and 47% R132H) and 10.9% carried IDH2 mutations (77% R140Q and 19% R172K). 852 patients underwent alloHCT in CR1. Within the alloHCT group, 6.2% had an IDH1 mutation (43.4% R132C and 41.4% R132H) and 10% were characterized by an IDH2 mutation (71.8% R140Q and 24.7% R172K). Variants IDH1 R132C and IDH2 R172K showed a significant benefit from alloHCT for OS (p = .017 and p = .049) and RFS (HR = 0.42, p = .048 and p = .009) compared with chemotherapy only. AlloHCT in IDH2 R140Q mutated AML resulted in longer RFS (HR = 0.4, p = .002).

Conclusion: In this large as-treated analysis, we showed that alloHCT is able to overcome the negative prognostic impact of certain IDH mutational subclasses in first-line consolidation treatment and could pending prognostic validation, provide prognostic value for AML risk stratification and therapeutic decision making.

Trial registration: ClinicalTrials.gov NCT03188874 NCT00180115 NCT00180102 NCT00266136 NCT00180167 NCT01382147 NCT00893373.

Keywords: Acute myeloid leukemia; Allogeneic hematopoietic cell transplantation; IDH mutations.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Consort diagram of patients’ distributions. Consort diagram of the study cohorts’ distribution according to the type of consolidation strategy (alloHCT vs. chemo-consolidation), IDH mutational status and respective submutational groups
Fig. 2
Fig. 2
Heatmap of frequent co-mutations according to IDH mutation status. Heatmap grouped for epigenetic, signaling, transcription, cohesion and splicing pathways of AML patients achieving CR1 with IDH wildtype (IDH-wt) or mutated IDH (IDH-mut). Only patients from the SAL registry with a full dataset of myeloid panel sequencing were included
Fig. 3
Fig. 3
Overall survival and relapse-free survival according to IDH mutation status and allogeneic hematopoietic cell transplantation in CR1. Simon–Makuch plots for a overall survival and b relapse-free survival of AML patients with IDH wildtype (WT) or mutated (mut) IDH treated with allogeneic hematopoietic cell transplantation (blue for IDHWT and violet for IDHmut) or conventional consolidation (red for IDHWT and green for IDHmut), respectively; p-values were determined with Cox model with time-dependent modeling of alloHCT; time in months
Fig. 4
Fig. 4
Overall survival according to IDH, IDH1 and IDH2 mutational status and allogeneic hematopoietic cell transplantation in CR1. Simon–Makuch plots for a overall survival and b relapse-free survival of AML patients with mutated (mut) IDH, IDH1 and IDH2 treated with allogeneic hematopoietic cell transplantation (blue) or conventional consolidation (red), respectively; p‐values were determined with Cox model with time‐dependent modeling of alloHCT; time in months; ns = not significant
Fig. 5
Fig. 5
Overall survival and relapse-free survival according to IDH1 and IDH2 mutational subgroups and allogeneic hematopoietic cell transplantation in CR1. Simon–Makuch plots for a and c overall survival and b and d relapse-free survival of AML patients with mutated IDH1 R132C, IDH1 R132H, IDH2 R140 and IDH2 R172 mutational subgroups treated with allogeneic hematopoietic cell transplantation (blue) or conventional consolidation (red), respectively; p-values were determined with Cox model with time-dependent modeling of alloHCT; time in months; ns = not significant
Fig. 6
Fig. 6
Multivariable Cox model with single interaction terms. Single interaction terms for a overall survival and b relapse-free survival for IDH submutational groups IDH1 R132C, IDH1 R132H, IDH2 R140Q and IDH2 R172K, other IDH mutational subgroups (other) or IDH wildtype (wt) with either allogeneic hematopoietic cell transplantation (alloHCT) or chemo-consolidation (noHCT); p-values and hazard ratios were determined with Cox model

References

    1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–1152. doi: 10.1056/NEJMra1406184.
    1. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–3643. doi: 10.1200/JCO.2010.28.3762.
    1. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18(20):5562–5571. doi: 10.1158/1078-0432.CCR-12-1773.
    1. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi: 10.1182/blood-2016-08-733196.
    1. Boissel N, Nibourel O, Renneville A, Gardin C, Reman O, Contentin N, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the acute leukemia french association group. J Clin Oncol. 2010;28(23):3717–3723. doi: 10.1200/JCO.2010.28.2285.
    1. Middeke JM, Metzeler KH, Röllig C, Kramer M, Eckardt JN, Stasik S, et al. Differential impact of IDH1 / 2 mutational subclasses on outcome in adult AML: results from a large multicenter study. Blood Adv. 2022;6(5):1394–1405. doi: 10.1182/bloodadvances.2021004934.
    1. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia. 2017;31(2):272–281. doi: 10.1038/leu.2016.275.
    1. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–1089. doi: 10.1056/NEJMoa1112304.
    1. Green CL, Evans CM, Zhao L, Hills RK, Burnett AK, Linch DC, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–412. doi: 10.1182/blood-2010-12-322479.
    1. Yamaguchi S, Iwanaga E, Tokunaga K, Nanri T, Shimomura T, Suzushima H, et al. IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation. Blood. 2013;122(21):4977–4977. doi: 10.1182/blood.V122.21.4977.4977.
    1. Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–2126. doi: 10.1182/blood-2009-11-250878.
    1. Chotirat S, Thongnoppakhun W, Promsuwicha O, Boonthimat C, Auewarakul CU. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5:5. doi: 10.1186/1756-8722-5-5.
    1. Chou WC, Lei WC, Ko BS, Hou HA, Chen CY, Tang JL, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011;25(2):246–253. doi: 10.1038/leu.2010.267.
    1. Aref S, Kamel Areida ES, Abdel Aaal MF, Adam OM, El-Ghonemy MS, El-Baiomy MA, et al. Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients. Clin Lymphoma Myeloma Leuk. 2015;15(9):550–555. doi: 10.1016/j.clml.2015.05.009.
    1. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol. 2010;28(14):2348–2355. doi: 10.1200/JCO.2009.27.3730.
    1. Feng JH, Guo XP, Chen YY, Wang ZJ, Cheng YP, Tang YM. Prognostic significance of IDH1 mutations in acute myeloid leukemia: a meta-analysis. Am J Blood Res. 2012;2(4):254–264.
    1. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–1066. doi: 10.1056/NEJMoa0903840.
    1. Willander K, Falk IJ, Chaireti R, Paul E, Hermansson M, Gréen H, et al. Mutations in the isocitrate dehydrogenase 2 gene and IDH1 SNP 105C > T have a prognostic value in acute myeloid leukemia. Biomark Res. 2014;2(1):18. doi: 10.1186/2050-7771-2-18.
    1. Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010;16(9):387–397. doi: 10.1016/j.molmed.2010.07.002.
    1. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225–234. doi: 10.1016/j.ccr.2010.01.020.
    1. Clark O, Yen K, Mellinghoff IK. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 2016;22(8):1837–1842. doi: 10.1158/1078-0432.CCR-13-1333.
    1. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–478. doi: 10.1038/nature10860.
    1. Meggendorfer M, Cappelli LV, Walter W, Haferlach C, Kern W, Falini B, et al. IDH1R132, IDH2R140 and IDH2R172 in AML: different genetic landscapes correlate with outcome and may influence targeted treatment strategies. Leukemia. 2018;32(5):1249–1253. doi: 10.1038/s41375-018-0026-z.
    1. Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, et al. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem. 2013;288(6):3804–3815. doi: 10.1074/jbc.M112.435495.
    1. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398. doi: 10.1056/NEJMoa1716984.
    1. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–731. doi: 10.1182/blood-2017-04-779405.
    1. Botton S, Brandwein JM, Wei AH, Pigneux A, Quesnel B, Thomas X, et al. Improved survival with enasidenib versus standard of care in relapsed/refractory acute myeloid leukemia associated with IDH2 mutations using historical data and propensity score matching analysis. Cancer Med. 2021;10(18):6336–6343. doi: 10.1002/cam4.4182.
    1. Montesinos P, Recher C, Vives S, Zarzycka E, Wang J, Bertani G, et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N Engl J Med. 2022;386(16):1519–1531. doi: 10.1056/NEJMoa2117344.
    1. DiNardo CD, Schuh AC, Stein EM, Montesinos P, Wei AH, de Botton S, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021;22(11):1597–1608. doi: 10.1016/S1470-2045(21)00494-0.
    1. Salhotra A, Afkhami M, Yang D, Mokhtari S, Telatar M, Gu D, et al. Allogeneic hematopoietic cell transplantation outcomes in patients carrying isocitrate dehydrogenase mutations. Clin Lymphoma Myeloma Leuk. 2019;19(7):e400–e405. doi: 10.1016/j.clml.2019.04.007.
    1. Chen EC, Li S, Eisfeld AK, Luskin MR, Mims A, Jones D, et al. Outcomes for patients with IDH-mutated acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Transpl Cell Ther. 2021;27(6):479.e1–479.e7. doi: 10.1016/j.jtct.2021.02.028.
    1. Röllig C, Thiede C, Gramatzki M, Aulitzky W, Bodenstein H, Bornhäuser M, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116(6):971–978. doi: 10.1182/blood-2010-01-267302.
    1. Schaich M, Parmentier S, Kramer M, Illmer T, Stölzel F, Röllig C, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J Clin Oncol. 2013;31(17):2094–2102. doi: 10.1200/JCO.2012.46.4743.
    1. Buchner T, Berdel WE, Haferlach C, Schnittger S, Haferlach T, Serve H, et al. Long-term results in patients with acute myeloid leukemia (AML): the influence of high-dose AraC, G-CSF priming, autologous transplantation, prolonged maintenance, age, history, cytogenetics, and mutation status. Data of the AMLCG 1999 trial. Blood. 2009;114(22):485. doi: 10.1182/blood.V114.22.485.485.
    1. Röllig C, Kramer M, Gabrecht M, Hänel M, Herbst R, Kaiser U, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann Oncol. 2018;29:973–978. doi: 10.1093/annonc/mdy030.
    1. Braess J, Amler S, Kreuzer KA, Spiekermann K, Lindemann HW, Lengfelder E, et al. Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia—a phase 3 study. Leukemia. 2018;32(12):2558–2571. doi: 10.1038/s41375-018-0268-9.
    1. Röllig C, Serve H, Hüttmann A, Noppeney R, Müller-Tidow C, Krug U, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–1699. doi: 10.1016/S1470-2045(15)00362-9.
    1. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–474. doi: 10.1182/blood-2009-07-235358.
    1. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–4649. doi: 10.1200/JCO.2003.04.036.
    1. Damm F, Thol F, Hollink I, Zimmermann M, Reinhardt K, van den Heuvel-Eibrink MM, et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML–BFM and DCOG study groups. Leukemia. 2011;25(11):1704–1710. doi: 10.1038/leu.2011.142.
    1. Stasik S, Schuster C, Ortlepp C, Platzbecker U, Bornhäuser M, Schetelig J, et al. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol Detect Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001.
    1. Gebhard C, Glatz D, Schwarzfischer L, Wimmer J, Stasik S, Nuetzel M, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33(1):26–36. doi: 10.1038/s41375-018-0165-2.
    1. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–698. doi: 10.1182/blood-2016-01-693879.
    1. Thiede C, Creutzig E, Illmer T, Schaich M, Heise V, Ehninger G, et al. Rapid and sensitive typing of NPM1 mutations using LNA-mediated PCR clamping. Leukemia. 2006;20(10):1897–1899. doi: 10.1038/sj.leu.2404367.
    1. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–4335. doi: 10.1182/blood.V99.12.4326.
    1. Duchmann M, Micol JB, Duployez N, Raffoux E, Thomas X, Marolleau JP, et al. Prognostic significance of concurrent gene mutations in intensively treated patients with IDH -mutated AML: an ALFA study. Blood. 2021;137(20):2827–2837. doi: 10.1182/blood.2020010165.
    1. Falini B, Spinelli O, Meggendorfer M, Martelli MP, Bigerna B, Ascani S, et al. IDH1-R132 changes vary according to NPM1 and other mutations status in AML. Leukemia. 2019;33(4):1043–1047. doi: 10.1038/s41375-018-0299-2.
    1. DiNardo CD, Ravandi F, Agresta S, Konopleva M, Takahashi K, Kadia T, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML: IDH mutations in AML. Am J Hematol. 2015;90(8):732–736. doi: 10.1002/ajh.24072.
    1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–2221. doi: 10.1056/NEJMoa1516192.
    1. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–567. doi: 10.1016/j.ccr.2010.11.015.
    1. Emadi A, Faramand R, Carter-Cooper B, Tolu S, Ford LA, Lapidus RG, et al. Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia: response to DNMTIs in mIDH AML. Am J Hematol. 2015;90(5):E77–E79. doi: 10.1002/ajh.23965.
    1. Lachowiez C, DiNardo CD, Morita K, Furudate K, Wang F, Tanaka T, et al. Longitudinal next generation sequencing reveals the clonal hierarchy of IDH mutated clones and impact on survival in NPM1 Mutated AML. Blood. 2021;138(Supplement 1):607–607. doi: 10.1182/blood-2021-148971.
    1. Losman J-A, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-Hydroxyglutarate Is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339(6127):1621–5. doi: 10.1126/science.1231677.
    1. Linch DC, Hills RK, Burnett AK, Russell N, Gale RE. Therapy for isocitrate dehydrogenase 2 (IDH2)R172‐mutant acute myeloid leukaemia. Br J Haematol. 2021; bjh.17981.
    1. Janin M, Mylonas E, Saada V, Micol JB, Renneville A, Quivoron C, et al. Serum 2-hydroxyglutarate production in IDH1 - and IDH2 -mutated de novo acute myeloid leukemia: a study by the acute leukemia French Association Group. J Clin Oncol. 2014;32(4):297–305. doi: 10.1200/JCO.2013.50.2047.
    1. Wang JH, Chen WL, Li JM, Wu SF, Chen TL, Zhu YM, et al. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. Proc Natl Acad Sci. 2013;110(42):17017–17022. doi: 10.1073/pnas.1315558110.
    1. DiNardo CD, Propert KJ, Loren AW, Paietta E, Sun Z, Levine RL, et al. Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood. 2013;121(24):4917–4924. doi: 10.1182/blood-2013-03-493197.

Source: PubMed

3
Abonnieren