New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis

Meng-Yu Wu, Chia-Jung Li, Ming-Feng Hou, Pei-Yi Chu, Meng-Yu Wu, Chia-Jung Li, Ming-Feng Hou, Pei-Yi Chu

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.

Keywords: atherosclerosis; atherosclerotic immunity; atherosclerotic microenvironment; macrophage; oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Small low-density lipoproteins (LDLs) penetrate the endothelial barrier and bind to proteoglycans via apolipoprotein B100 to retain in the subendothelial space. LDL is oxidized (ox-LDL) and induces several pro-inflammatory conditions via lectin-like oxidized LDL receptor-1 (LOX-1). The upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular-cell adhesion molecule-1 (VCAM-1) by ox-LDL increase monocyte and inflammatory cell adhesion on the endothelium. Ox-LDL particles stimulate endothelial cells and smooth muscle cells (SMCs) to secrete monocyte chemotactic protein-1 (MCP-1) and monocyte colony stimulating factor (M-CSF), with both factors inducing monocyte recruitment. Ox-LDL promotes an increased in reactive oxygen species (ROS) and inhibits nitric oxide production. Monocytes differentiate into macrophages and express scavenger receptors (SRs), cluster of differentiation 36 (CD36), LOX-1, and Toll-like receptors (TLRs). Ox-LDL–CD36 interaction induces monocyte differentiation, macrophage activation, and macrophage retention, and macrophage SRs increase ox-LDL uptake and foam-cell formation. The retention of ox-LDL leads to foam cell apoptosis and inflammatory progression. Ox-LDLs also increase the expression of growth factors, including platelet-derived growth factor (PDGF) for migration and basic fibroblast growth factor (bFGF) for proliferation, on SMCs. SMC proliferation contributes to the thickening of atherosclerotic plaques and formation of a necrotic core. The ox-LDL–CD36 interaction in resting platelets causes platelet aggregation and activation, with activated platelets expressing LOX-1 to mediate adhesion to endothelial cells and enhance endothelin-1 release. The endothelial function is impaired along with decreasing nitric oxide production and increasing prostaglandin synthesis.
Figure 2
Figure 2
Hyperlipidemic status and other conditions can induce the accumulation of advanced glycation end products (AGEs), leading to increase reactive oxygen species (ROS) and retention of oxidized low-density lipoprotein (ox-LDL). Oxidative stress causes endothelial dysfunction and impairs the release of nitric oxide (NO) and endothelin-1 (ET-1). In atherosclerotic lesions, elevated tissue levels of ET-1 bind to ETB receptors on endothelial cells and cause expression of endothelial cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular-cell-adhesion molecule-1 (VCAM-1). ET-1 promotes monocyte migration and activation by monocyte chemoattractant protein-1 (MCP-1), which is released from activated macrophages and endothelial cells. ET-1 also activates vascular smooth muscle cells (VSMCs) via ETA receptors to promote SMC proliferation. Oxidative stress also causes lower tissue levels of BH4 and induces the uncoupling of endothelial nitric oxide synthase (eNOS) and superoxide.
Figure 3
Figure 3
The role of inflammatory cells in atherosclerotic lesion.

References

    1. Falk E. Pathogenesis of Atherosclerosis. J. Am. Coll. Cardiol. 2006;47:C7–C12. doi: 10.1016/j.jacc.2005.09.068.
    1. Singh B.R., Mengi S.A., Xu Y.J., Arneja A.S., Dhalla N.S. Pathogenesis of Atherosclerosis: A Multifactorial Process. Exp. Clin. Cardiol. 2002;7:40–53.
    1. Albertini R., Moratti R., de Luca G. Oxidation of Low-Density Lipoprotein in Atherosclerosis from Basic Biochemistry to Clinical Studies. Curr. Mol. Med. 2002;2:579–592. doi: 10.2174/1566524023362177.
    1. Nguyen P., Leray V., Diez M., Serisier S., le Bloc’h J., Siliart B., Dumon H. Liver Lipid Metabolism. J. Anim. Physiol. Anim. Nutr. 2008;92:272–283. doi: 10.1111/j.1439-0396.2007.00752.x.
    1. Khalil F.M., Wagner W.D., Goldberg I.J. Molecular Interactions Leading to Lipoprotein Retention and the Initiation of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004;24:2211–2218. doi: 10.1161/01.ATV.0000147163.54024.70.
    1. Kramer-Guth A., Greiber S., Pavenstadt H., Quaschning T., Winkler K., Schollmeyer P., Wanner C. Interaction of Native and Oxidized Lipoprotein(a) with Human Mesangial Cells and Matrix. Kidney Int. 1996;49:1250–1261. doi: 10.1038/ki.1996.179.
    1. Williams K.J. Arterial Wall Chondroitin Sulfate Proteoglycans: Diverse Molecules with Distinct Roles in Lipoprotein Retention and Atherogenesis. Curr. Opin. Lipidol. 2001;12:477–487. doi: 10.1097/00041433-200110000-00002.
    1. Wiśniewska A., Olszanecki R., Totoń-Żurańska J., Kuś K., Stachowicz A., Suski M., Gębska A., Gajda M., Jawień J., Korbut R. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int. J. Mol. Sci. 2017;18:1706. doi: 10.3390/ijms18081706.
    1. Choi H.S., Harkewicz R., Lee J.H., Boullier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. Lipoprotein Accumulation in Macrophages Via Toll-Like Receptor-4-Dependent Fluid Phase Uptake. Circ. Res. 2009;104:1355–1363. doi: 10.1161/CIRCRESAHA.108.192880.
    1. Zhou S.M., Chadipiralla K., Mendez A.J., Jaimes E.A., Silverstein R.L., Webster K., Raij L. Nicotine Potentiates Proatherogenic Effects of OxLDL by Stimulating and Upregulating Macrophage CD36 Signaling. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H563–H574. doi: 10.1152/ajpheart.00042.2013.
    1. Bloomer R.J. Decreased Blood Antioxidant Capacity and Increased Lipid Peroxidation in Young Cigarette Smokers Compared to Nonsmokers: Impact of Dietary Intake. Nutr. J. 2007;6:39. doi: 10.1186/1475-2891-6-39.
    1. Frostegård J., Ruihua W.U., Lemne C., Thulin T., Witztum J.L., de Faire U. Circulating Oxidized Low-Density Lipoprotein Is Increased in Hypertension. Clin. Sci. 2003;105:615–620. doi: 10.1042/CS20030152.
    1. Levitan I., Volkov S., Subbaiah P.V. Oxidized Ldl: Diversity, Patterns of Recognition, and Pathophysiology. Antioxid. Redox. Signal. 2010;13:39–75. doi: 10.1089/ars.2009.2733.
    1. Parthasarathy S., Raghavamenon A., Garelnabi M.O., Santanam N. Oxidized Low-Density Lipoprotein. Methods Mol. Biol. 2010;610:403–417.
    1. Badrnya S., Assinger A., Volf I. Native High Density Lipoproteins (HDL) Interfere with Platelet Activation Induced by Oxidized Low Density Lipoproteins (OxLDL) Int. J. Mol. Sci. 2013;14:10107. doi: 10.3390/ijms140510107.
    1. Cominacini L., Garbin U., Pasini A.F., Davoli A., Campagnola M., Contessi G.B., Pastorino A.M., Cascio V.L. Antioxidants Inhibit the Expression of Intercellular Cell Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Induced by Oxidized LDL on Human Umbilical Vein Endothelial Cells. Free Radic. Biol. Med. 1997;22:117–127. doi: 10.1016/S0891-5849(96)00271-7.
    1. Frostegard J., Haegerstrand A., Gidlund M., Nilsson J. Biologically Modified LDL Increases the Adhesive Properties of Endothelial Cells. Atherosclerosis. 1991;90:119–126. doi: 10.1016/0021-9150(91)90106-D.
    1. Quinn M.T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: A Chemotactic Factor for Human Monocytes and Its Potential Role in Atherogenesis. Proc. Natl. Acad. Sci. USA. 1988;85:2805–2809. doi: 10.1073/pnas.85.8.2805.
    1. Barbieri S.S., Cavalca V., Eligini S., Brambilla M., Caiani A., Tremoli E., Colli S. Apocynin Prevents Cyclooxygenase 2 Expression in Human Monocytes through Nadph Oxidase and Glutathione Redox-Dependent Mechanisms. Free Radic. Biol. Med. 2004;37:156–165. doi: 10.1016/j.freeradbiomed.2004.04.020.
    1. Carr A.C., McCall M.R., Frei B. Oxidation of LDL by Myeloperoxidase and Reactive Nitrogen Species: Reaction Pathways and Antioxidant Protection. Arterioscler. Thromb. Vasc. Biol. 2000;20:1716–1723. doi: 10.1161/01.ATV.20.7.1716.
    1. Cyrus T., Witztum J.L., Rader D.J., Tangirala R., Fazio S., Linton M.F., Funk C.D. Disruption of the 12/15-Lipoxygenase Gene Diminishes Atherosclerosis in Apo E-Deficient Mice. J. Clin. Investig. 1999;103:1597–1604. doi: 10.1172/JCI5897.
    1. Nagy L., Tontonoz P., Alvarez J.G., Chen H., Evans R.M. Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ. Cell. 1998;93:229–240. doi: 10.1016/S0092-8674(00)81574-3.
    1. Park Y.M. CD36 Modulates Migration of Mouse and Human Macrophages in Response to Oxidized LDL and May Contribute to Macrophage Trapping in the Arterial Intima. J. Clin. Investig. 2009;119:136–145. doi: 10.1172/JCI35535.
    1. Park Y.M., Drazba J.A., Vasanji A., Egelhoff T., Febbraio M., Silverstein R.L. Oxidized LDL/CD36 Interaction Induces Loss of Cell Polarity and Inhibits Macrophage Locomotion. Mol. Biol. Cell. 2012;23:3057–3068. doi: 10.1091/mbc.E11-12-1051.
    1. Hansson G.K., Robertson A.K., Soderberg-Naucler C. Inflammation and Atherosclerosis. Annu. Rev. Pathol. 2006;1:297–329. doi: 10.1146/annurev.pathol.1.110304.100100.
    1. Liao F., Andalibi A., deBeer F.C., Fogelman A.M., Lusis A.J. Genetic Control of Inflammatory Gene Induction and NF-κB-Like Transcription Factor Activation in Response to an Atherogenic Diet in Mice. J. Clin. Investig. 1993;91:2572–2579. doi: 10.1172/JCI116495.
    1. Kohno M., Yokokawa K., Yasunari K., Minami M., Kano H., Hanehira T., Yoshikawa J. Induction by Lysophosphatidylcholine, a Major Phospholipid Component of Atherogenic Lipoproteins, of Human Coronary Artery Smooth Muscle Cell Migration. Circulation. 1998;98:353–359. doi: 10.1161/01.CIR.98.4.353.
    1. Lindner V., Lappi D.A., Baird A., Majack R.A., Reidy M.A. Role of Basic Fibroblast Growth Factor in Vascular Lesion Formation. Circ. Res. 1991;68:106–113. doi: 10.1161/01.RES.68.1.106.
    1. Stiko-Rahm A., Hultgardh-Nilsson A., Regnstrom J., Hamsten A., Nilsson J. Native and Oxidized LDL Enhances Production of PDGF AA and the Surface Expression of PDGF Receptors in Cultured Human Smooth Muscle Cells. Arterioscler. Thromb. 1992;12:1099–1109. doi: 10.1161/01.ATV.12.9.1099.
    1. Maiolino G., Rossitto G., Caielli P., Bisogni V., Rossi G.P., Cala L.A. The Role of Oxidized Low-Density Lipoproteins in Atherosclerosis: The Myths and the Facts. Mediat. Inflamm. 2013;2013:13. doi: 10.1155/2013/714653.
    1. Loidl A., Claus R., Ingolic E., Deigner H.P., Hermetter A. Role of Ceramide in Activation of Stress-Associated MAP Kinases by Minimally Modified LDL in Vascular Smooth Muscle Cells. Biochim. Biophys. Acta. 2004;1690:150–158. doi: 10.1016/j.bbadis.2004.06.003.
    1. Rajavashisth T.B., Liao J.K., Galis Z.S., Tripathi S., Laufs U., Tripathi J., Chai N.N., Xu X.P., Jovinge S., Shah P.K., et al. Inflammatory Cytokines and Oxidized Low Density Lipoproteins Increase Endothelial Cell Expression of Membrane Type 1-Matrix Metalloproteinase. J. Biol. Chem. 1999;274:11924–11929. doi: 10.1074/jbc.274.17.11924.
    1. Xu X.P., Meisel S.R., Ong J.M., Kaul S., Cercek B., Rajavashisth T.B., Sharifi B., Shah P.K. Oxidized Low-Density Lipoprotein Regulates Matrix Metalloproteinase-9 and Its Tissue Inhibitor in Human Monocyte-Derived Macrophages. Circulation. 1999;99:993–998. doi: 10.1161/01.CIR.99.8.993.
    1. Podrez E.A., Byzova T.V., Febbraio M., Salomon R.G., Ma Y., Valiyaveettil M., Poliakov E., Sun M., Finton P.J., Curtis B.R., et al. Platelet CD36 Links Hyperlipidemia, Oxidant Stress and a Prothrombotic Phenotype. Nat. Med. 2007;13:1086–1095. doi: 10.1038/nm1626.
    1. Wraith K.S., Magwenzi S., Aburima A., Wen Y., Leake D., Naseem M.K. Oxidized Low-Density Lipoproteins Induce Rapid Platelet Activation and Shape Change through Tyrosine Kinase and Rho Kinase-Signaling Pathways. Blood. 2013;122:580–589. doi: 10.1182/blood-2013-04-491688.
    1. Chen M., Kakutani M., Naruko T., Ueda M., Narumiya S., Masaki T., Sawamura T. Activation-Dependent Surface Expression of LOX-1 in Human Platelets. Biochem. Biophys. Res. Commun. 2001;282:153–158. doi: 10.1006/bbrc.2001.4516.
    1. Pirillo A., Norata G.D., Catapano A.L. LOX-1, OxLDL, and Atherosclerosis. Mediat. Inflamm. 2013 doi: 10.1155/2013/152786.
    1. Cominacini L., Pasini A.F., Garbin U., Pastorino A., Rigoni A., Nava C., Davoli A., Cascio V.L., Sawamura T. The Platelet-Endothelium Interaction Mediated by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Reduces the Intracellular Concentration of Nitric Oxide in Endothelial Cells. J. Am. Coll. Cardiol. 2003;41:499–507. doi: 10.1016/S0735-1097(02)02811-5.
    1. Kakutani M., Masaki T., Sawamura T. A Platelet–Endothelium Interaction Mediated by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1. Proc. Natl. Acad. Sci. USA. 2000;97:360–364. doi: 10.1073/pnas.97.1.360.
    1. Li L.X., Chen J.X., Liao D.F., Yu L. Probucol Inhibits Oxidized-Low Density Lipoprotein-Induced Adhesion of Monocytes to Endothelial Cells by Reducing P-Selectin Synthesis in Vitro. Endothelium. 1998;6:1–8. doi: 10.3109/10623329809053400.
    1. Thorin E., Hamilton C.A., Dominiczak M.H., Reid J.L. Chronic Exposure of Cultured Bovine Endothelial Cells to Oxidized LDL Abolishes Prostacyclin Release. Arterioscler. Thromb. 1994;14:453–459. doi: 10.1161/01.ATV.14.3.453.
    1. Yu M., Tsai S.F., Kuo Y.M. The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis. Int. J. Mol. Sci. 2017;18:1260. doi: 10.3390/ijms18061260.
    1. Uribarri J., Woodruff S., Goodman S., Cai W., Chen X., Pyzik R., Yong A., Striker G.E., Vlassara H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010;110:911–916. doi: 10.1016/j.jada.2010.03.018.
    1. Orekhov A.N., Bobryshev Y.V., Sobenin I.A., Melnichenko A.A., Chistiakov D.A. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease. Int. J. Mol. Sci. 2014;15:12807. doi: 10.3390/ijms150712807.
    1. Steyers C., Miller F. Endothelial Dysfunction in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2014;15:11324. doi: 10.3390/ijms150711324.
    1. Wang D., Wang Z., Zhang L., Wang Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediat. Inflamm. 2017 doi: 10.1155/2017/8135934.
    1. Napoli C., de Nigris F., Williams-Ignarro S., Pignalosa O., Sica V., Ignarro L.J. Nitric Oxide and Atherosclerosis: An Update. Nitric Oxide. 2006;15:265–279. doi: 10.1016/j.niox.2006.03.011.
    1. Ignarro L.J., Napoli C. Novel Features of Nitric Oxide, Endothelial Nitric Oxide Synthase, and Atherosclerosis. Curr. Atheroscler. Rep. 2005;5:17–23. doi: 10.1007/s11892-005-0062-8.
    1. Moncada S., Higgs A. The L-Arginine-Nitric Oxide Pathway. N. Engl. J. Med. 1993;329:2002–2012.
    1. Stuehr D.J. Mammalian Nitric Oxide Synthases. Biochim. Biophys. Acta. 1999;1411:217–230. doi: 10.1016/S0005-2728(99)00016-X.
    1. Moncada S., Palmer R.M., Higgs E.A. Nitric Oxide: Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 1991;43:109–142.
    1. Nathan C., Xie Q.W. Regulation of Biosynthesis of Nitric Oxide. J. Biol. Chem. 1994;269:13725–13728.
    1. Kawashima S., Mitsuhiro Y. Dysfunction of Endothelial Nitric Oxide Synthase and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004;24:998–1005. doi: 10.1161/01.ATV.0000125114.88079.96.
    1. Laursen J.B., Somers M., Kurz S., McCann L., Warnholtz A., Freeman B.A., Tarpey M., Fukai T., Harrison D.G. Endothelial Regulation of Vasomotion in ApoE-Deficient Mice: Implications for Interactions between Peroxynitrite and Tetrahydrobiopterin. Circulation. 2001;103:1282–1288. doi: 10.1161/01.CIR.103.9.1282.
    1. Lunte C.E., Kissinger P.T. Determination of Quinonoid Dihydrobiopterin by Liquid Chromatography and Electrochemical Detection. J. Chromatogr. 1984;317:407–412. doi: 10.1016/S0021-9673(01)91680-2.
    1. Vann L.R., Payne S.G., Edsall L.C., Twitty S., Spiegel S., Milstien S. Involvement of Sphingosine Kinase in TNF-α-Stimulated Tetrahydrobiopterin Biosynthesis in C6 Glioma Cells. J. Biol. Chem. 2002;277:12649–12656. doi: 10.1074/jbc.M109111200.
    1. SenBanerjee S., Lin Z., Atkins G.B., Greif D.M., Rao R.M., Kumar A., Feinberg M.W., Chen Z., Simon D.I., Luscinskas F.W., et al. KLF2 Is a Novel Transcriptional Regulator of Endothelial Proinflammatory Activation. J. Exp. Med. 2004;199:1305–1315. doi: 10.1084/jem.20031132.
    1. Fan J., Unoki H., Iwasa S., Watanabe T. Role of Endothelin-1 in Atherosclerosis. Ann. N. Y. Acad. Sci. 2000;902:84–94. doi: 10.1111/j.1749-6632.2000.tb06303.x.
    1. Pernow J., Shemyakin A., Bohm F. New Perspectives on Endothelin-1 in Atherosclerosis and Diabetes Mellitus. Life Sci. 2012;91:507–516. doi: 10.1016/j.lfs.2012.03.029.
    1. Sakurai T., Yanagisawa M., Masaki T. Molecular Characterization of Endothelin Receptors. Trends Pharmacol. Sci. 1992;13:103–108.
    1. Schiffrin E.L., Touyz R.M. Vascular Biology of Endothelin. J. Cardiovasc. Pharmacol. 1997;32:S2–S13.
    1. Yanagisawa M., Masaki T. Molecular Biology and Biochemistry of the Endothelins. Trends Pharmacol. Sci. 1989;10:374–378.
    1. Böhm F., Pernow J. The Importance of Endothelin-1 for Vascular Dysfunction in Cardiovascular Disease. Cardiovasc. Res. 2007;76:8–18. doi: 10.1016/j.cardiores.2007.06.004.
    1. Ito H., Hirata Y., Adachi S., Tanaka M., Tsujino M., Koike A., Nogami A., Murumo F., Hiroe M. Endothelin-1 Is an Autocrine/Paracrine Factor in the Mechanism of Angiotensin II-Induced Hypertrophy in Cultured Rat Cardiomyocytes. J. Clin. Investig. 1993;92:398–403. doi: 10.1172/JCI116579.
    1. Iwasa S., Fan J., Shimokama T., Nagata M., Watanabe T. Increased Immunoreactivity of Endothelin-1 and Endothelin B Receptor in Human Atherosclerotic Lesions. A Possible Role in Atherogenesis. Atherosclerosis. 1999;146:93–100. doi: 10.1016/S0021-9150(99)00134-3.
    1. Ivanova E.A., Orekhov A.N. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis. Int. J. Mol. Sci. 2016;17:193. doi: 10.3390/ijms17020193.
    1. Filep J.G., Sirois M.G., Foldes-Filep E., Rousseau A., Plante G.E., Fournier A., Yano M., Sirois P. Enhancement by Endothelin-1 of Microvascular Permeability Via the Activation of ETA Receptors. Br. J. Pharmacol. 1993;109:880–886. doi: 10.1111/j.1476-5381.1993.tb13657.x.
    1. Swerlick A.R., Lawley T.J. Role of Microvascular Endothelial Cells in Inflammation. J. Investig. Dermatol. 1993;100:S111–S115. doi: 10.1038/jid.1993.33.
    1. Hansson G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430.
    1. Kume N., Cybulsky M.I., Gimbrone M.A., Jr. Lysophosphatidylcholine, a Component of Atherogenic Lipoproteins, Induces Mononuclear Leukocyte Adhesion Molecules in Cultured Human and Rabbit Arterial Endothelial Cells. J. Clin. Investig. 1992;90:1138–1144. doi: 10.1172/JCI115932.
    1. Dai G., Kaazempur-Mofrad M.R., Natarajan S., Zhang Y., Vaughn S., Blackman B.R., Kamm R.D., Garcia-Cardena G., Gimbrone M.A., Jr. Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived from Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature. Proc. Natl. Acad. Sci. USA. 2004;101:14871–14876. doi: 10.1073/pnas.0406073101.
    1. Boring L., Gosling J., Cleary M., Charo I.F. Decreased Lesion Formation in CCR2-/- Mice Reveals a Role for Chemokines in the Initiation of Atherosclerosis. Nature. 1998;394:894–897. doi: 10.1038/29788.
    1. Gu L., Okada Y., Clinton S.K., Gerard C., Sukhova G.K., Libby P., Rollins B.J. Absence of Monocyte Chemoattractant Protein-1 Reduces Atherosclerosis in Low Density Lipoprotein Receptor-Deficient Mice. Mol. Cell. 1998;2:275–281. doi: 10.1016/S1097-2765(00)80139-2.
    1. Haley K.J., Lilly C.M., Yang J.H., Feng Y., Kennedy S.P., Turi T.G., Thompson J.F., Sukhova G.H., Libby P., Lee R.T. Overexpression of Eotaxin and the CCR3 Receptor in Human Atherosclerosis: Using Genomic Technology to Identify a Potential Novel Pathway of Vascular Inflammation. Circulation. 2000;102:2185–2189. doi: 10.1161/01.CIR.102.18.2185.
    1. Mach F., Sauty A., Iarossi A.S., Sukhova G.K., Neote K., Libby P., Luster A.D. Differential Expression of Three T Lymphocyte-Activating CXC Chemokines by Human Atheroma-Associated Cells. J. Clin. Investig. 1999;104:1041–1050. doi: 10.1172/JCI6993.
    1. Lesnik P., Haskell C.A., Charo I.F. Decreased Atherosclerosis in CX3CR1-/- Mice Reveals a Role for Fractalkine in Atherogenesis. J. Clin. Investig. 2003;111:333–340. doi: 10.1172/JCI15555.
    1. Hansson G.K. Immune Mechanisms in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2001;21:1876–1890. doi: 10.1161/hq1201.100220.
    1. Mestas J., Ley K. Monocyte-Endothelial Cell Interactions in the Development of Atherosclerosis. Trends Cardiovasc. Med. 2008;18:228–232. doi: 10.1016/j.tcm.2008.11.004.
    1. Moore K.J., Tabas I. Macrophages in the Pathogenesis of Atherosclerosis. Cell. 2011;145:341–355. doi: 10.1016/j.cell.2011.04.005.
    1. Rizzacasa B., Morini E., Pucci S., Murdocca M., Novelli G., Amati F. LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int. J. Mol. Sci. 2017;18:290. doi: 10.3390/ijms18020290.
    1. Kruth H.S. The Fate of Lipoprotein Cholesterol Entering the Arterial Wall. Curr. Opin. Lipidol. 1997;8:246–252. doi: 10.1097/00041433-199710000-00002.
    1. Alberts-Grill N., Timothy L.D., Rezvan A., Jo H. The Role of the Vascular Dendritic Cell Network in Atherosclerosis. Am. J. Phys. 2013;305:C1–C21. doi: 10.1152/ajpcell.00017.2013.
    1. Hansson G.K., Robertson A.K. TGF-β in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004;24:e137–e138. doi: 10.1161/01.ATV.0000130728.38755.09.
    1. Grainger D.J. Transforming Growth Factor β and Atherosclerosis: So Far, So Good for the Protective Cytokine Hypothesis. Arterioscler. Thromb. Vasc. Biol. 2004;24:399–404. doi: 10.1161/01.ATV.0000114567.76772.33.
    1. Xu S., Liu A.C., Gotlieb A.I. Common Pathogenic Features of Atherosclerosis and Calcific Aortic Stenosis: Role of Transforming Growth Factor-β. Cardiovasc. Pathol. 2010;19:236–247. doi: 10.1016/j.carpath.2009.09.007.
    1. Grainger D.J. TGF-β and Atherosclerosis in Man. Cardiovasc. Res. 2007;74:213–222. doi: 10.1016/j.cardiores.2007.02.022.
    1. McCaffrey T.A. TGF-βs and TGF-β Receptors in Atherosclerosis. Cytokine. Growth. Factor. Rev. 2000;11:103–114. doi: 10.1016/S1359-6101(99)00034-9.
    1. Falck-Hansen M., Christina K., Claudia M. Toll-Like Receptors in Atherosclerosis. Int. J. Mol. Sci. 2013;14:14008–14023. doi: 10.3390/ijms140714008.
    1. Galkina E., Ley K. Immune and Inflammatory Mechanisms of Atherosclerosis. Annu. Rev. Immunol. 2009;27:165–197. doi: 10.1146/annurev.immunol.021908.132620.
    1. Van Vré E.A., Van Brussel I., Bosmans J.M., Vrints C.J., Bult H. Dendritic Cells in Human Atherosclerosis: From Circulation to Atherosclerotic Plaques. Mediat. Inflamm. 2011 doi: 10.1155/2011/941396.
    1. Aliberti J., Schulz O., Pennington D.J., Tsujimura H., e Sousa C.R., Ozato K., Sher A. Essential Role for ICSBP in the in vivo Development of Murine CD8α+ Dendritic Cells. Blood. 2003;101:305–310. doi: 10.1182/blood-2002-04-1088.
    1. Hacker C., Kirsch R.D., Ju X.S., Hieronymus T., Gust T.C., Kuhl C., Jorgas T., Kurz S.M., Rose-John S., Yokota Y., et al. Transcriptional Profiling Identifies ID2 Function in Dendritic Cell Development. Nat. Immunol. 2003;4:380–386. doi: 10.1038/ni903.
    1. Hashimoto D., Miller J., Merad M. Dendritic Cell and Macrophage Heterogeneity in vivo. Immunity. 2011;35:323–335. doi: 10.1016/j.immuni.2011.09.007.
    1. Hildner K., Edelson B.T., Purtha W.E., Diamond M., Matsushita H., Kohyama M., Calderon B., Schraml B.U., Unanue E.R., Diamond M.S., et al. BATF3 Deficiency Reveals a Critical Role for CD8α+ Dendritic Cells in Cytotoxic T Cell Immunity. Science. 2008;322:1097–1100. doi: 10.1126/science.1164206.
    1. Schiavoni G., Mattei F., Sestili P., Borghi P., Venditti M., Morse H.C., Belardelli F., Gabriele L. ICSBP Is Essential for the Development of Mouse Type I Interferon-Producing Cells and for the Generation and Activation of CD8α+ Dendritic Cells. J. Exp. Med. 2002;196:1415–1425. doi: 10.1084/jem.20021263.
    1. Tailor P., Tamura T., Morse H.C., Ozato K. The BXH2 Mutation in IRF8 Differentially Impairs Dendritic Cell Subset Development in the Mouse. Blood. 2008;111:1942–1945. doi: 10.1182/blood-2007-07-100750.
    1. Subramanian M., Tabas I. Semin Immunopathol. Volume 36. Springer; Berlin/Heidelberg, Germany: 2014. Dendritic Cells in Atherosclerosis; pp. 93–102.
    1. Niessner A., Weyand C.M. Dendritic Cells in Atherosclerotic Disease. Clin. Immunol. 2010;134:25. doi: 10.1016/j.clim.2009.05.006.
    1. Koltsova E.K., Ley K. How Dendritic Cells Shape Atherosclerosis. Trends Immunol. 2011;32:540–547. doi: 10.1016/j.it.2011.07.001.
    1. Zernecke A. Dendritic Cells in Atherosclerosis: Evidence in Mice and Humans. Arterioscler. Thromb. Vasc. Biol. 2015;35:763–770. doi: 10.1161/ATVBAHA.114.303566.
    1. Tabas I. Macrophage Death and Defective Inflammation Resolution in Atherosclerosis. Nat. Rev. Immunol. 2010;10:36–46. doi: 10.1038/nri2675.
    1. Maganto-Garcia E., Tarrio M.L., Grabie N., Bu D.X., Lichtman A.H. Dynamic Changes in Regulatory T Cells Are Linked to Levels of Diet-Induced Hypercholesterolemia. Circulation. 2011;124:185–195. doi: 10.1161/CIRCULATIONAHA.110.006411.
    1. Weber C., Meiler S., Döring Y., Koch M., Drechsler M., Megens R.T., Rowinska Z., Bidzhekov K., Fecher C., Ribechini E., et al. CCL17-Expressing Dendritic Cells Drive Atherosclerosis by Restraining Regulatory T Cell Homeostasis in Mice. J. Clin. Investig. 2011;121:2898–2910. doi: 10.1172/JCI44925.
    1. Jonasson L., Holm J., Skalli O., Bondjers G., Hansson G.K. Regional Accumulations of T Cells, Macrophages, and Smooth Muscle Cells in the Human Atherosclerotic Plaque. Arteriosclerosis. 1986;6:131–138. doi: 10.1161/01.ATV.6.2.131.
    1. Kleindienst R., Xu Q., Willeit J., Waldenberger F.R., Weimann S., Wick G. Immunology of Atherosclerosis. Demonstration of Heat Shock Protein 60 Expression and T Lymphocytes Bearing α/β or γ/δ Receptor in Human Atherosclerotic Lesions. Am. J. Pathol. 1993;142:1927–1937.
    1. Stemme S., Holm J., Hansson G.K. T Lymphocytes in Human Atherosclerotic Plaques Are Memory Cells Expressing CD45RO and the Integrin VLA-1. Arterioscler. Thromb. 1992;12:206–211. doi: 10.1161/01.ATV.12.2.206.
    1. Van der Wal A.C., Das P.K., van de Berg D.B., van der Loos C.M., Becker A.E. Atherosclerotic Lesions in Humans. in situ Immunophenotypic Analysis Suggesting an Immune Mediated Response. Lab. Investig. 1989;61:166–170.
    1. Wick G., Jakic B., Buszko M., Wick M.C., Grundtman C. The Role of Heat Shock Proteins in Atherosclerosis. Nat. Rev. Cardiol. 2014;11:516–529. doi: 10.1038/nrcardio.2014.91.
    1. Libby P., Ridker P.M., Maseri A. Inflammation and Atherosclerosis. Annu. Rev. Pathol. 2002;1:297–329.
    1. Ashkar S., Weber G.F., Panoutsakopoulou V., Sanchirico M.E., Jansson M., Zawaideh S., Rittling S.R., Denhardt D.T., Glimcher M.J., Cantor H. Eta-1 (Osteopontin): An Early Component of Type-1 (Cell-Mediated) Immunity. Science. 2000;287:860–864. doi: 10.1126/science.287.5454.860.
    1. Giachelli C.M., Bae N., Almeida M., Denhardt D.T., Alpers C.E., Schwartz S.M. Osteopontin Is Elevated During Neointima Formation in Rat Arteries and Is a Novel Component of Human Atherosclerotic Plaques. J. Clin. Investig. 1993;92:1686–1696. doi: 10.1172/JCI116755.
    1. O’Brien E.R., Garvin M.R., Stewart D.K., Hinohara T., Simpson J.B., Schwartz S.M., Giachelli C.M. Osteopontin Is Synthesized by Macrophage, Smooth Muscle, and Endothelial Cells in Primary and Restenotic Human Coronary Atherosclerotic Plaques. Arterioscler. Thromb. 1994;14:1648–1656. doi: 10.1161/01.ATV.14.10.1648.
    1. Uyemura K., Demer L.L., Castle S.C., Jullien D., Berliner J.A., Gately M.K., Warrier R.R., Pham N., Fogelman A.M., Modlin R.L. Cross-Regulatory Roles of Interleukin (IL)-12 and IL-10 in Atherosclerosis. J. Clin. Investig. 1996;97:2130–2138. doi: 10.1172/JCI118650.
    1. Peilot H., Rosengren B., Bondjers G., Hurt-Camejo E. Interferon-γ Induces Secretory Group IIA Phospholipase A2 in Human Arterial Smooth Muscle Cells. Involvement of Cell Differentiation, STAT-3 Activation, and Modulation by Other Cytokines. J. Biol. Chem. 2000;275:22895–22904. doi: 10.1074/jbc.M002783200.
    1. Friesel R., Komoriya A., Maciag T. Inhibition of Endothelial Cell Proliferation by γ-Interferon. J. Cell Biol. 1987;104:689–696. doi: 10.1083/jcb.104.3.689.
    1. Hansson G.K., Hellstrand M., Rymo L., Rubbia L., Gabbiani G. Interferon γ Inhibits both Proliferation and Expression of Differentiation-Specific α-Smooth Muscle Actin in Arterial Smooth Muscle Cells. J. Exp. Med. 1989;170:1595–1608. doi: 10.1084/jem.170.5.1595.
    1. Hansson G.K., Holm J. Interferon-Γ Inhibits Arterial Stenosis after Injury. Circulation. 1991;84:1266–1272. doi: 10.1161/01.CIR.84.3.1266.
    1. Szabo S.J., Sullivan B.M., Peng S.L., Glimcher L.H. Molecular Mechanisms Regulating Th1 Immune Responses. Annu. Rev. Immunol. 2003;21:713–758. doi: 10.1146/annurev.immunol.21.120601.140942.
    1. Gewurz H., Zhang X.H., Lint T.F. Structure and Function of the Pentraxins. Curr. Opin. Immunol. 1995;7:54–64. doi: 10.1016/0952-7915(95)80029-8.
    1. Ikeda U., Ikeda M., Seino Y., Takahashi M., Kano S., Shimada K. Interleukin 6 Gene Transcripts Are Expressed in Atherosclerotic Lesions of Genetically Hyperlipidemic Rabbits. Atherosclerosis. 1992;92:213–218. doi: 10.1016/0021-9150(92)90280-T.
    1. Loppnow H., Libby P. Proliferating or Interleukin 1-Activated Human Vascular Smooth Muscle Cells Secrete Copious Interleukin 6. J. Clin. Investig. 1990;85:731–738. doi: 10.1172/JCI114498.
    1. Mallat Z., Heymes C., Ohan J., Faggin E., Leseche G., Tedgui A. Expression of Interleukin-10 in Advanced Human Atherosclerotic Plaques: Relation to Inducible Nitric Oxide Synthase Expression and Cell Death. Arterioscler. Thromb. Vasc. Biol. 1999;19:611–616. doi: 10.1161/01.ATV.19.3.611.
    1. Binder C.J., Hartvigsen K., Chang M.K., Miller M., Broide D., Palinski W., Curtiss L.K., Corr M., Witztum J.L. IL-5 Links Adaptive and Natural Immunity Specific for Epitopes of Oxidized LDL and Protects from Atherosclerosis. J. Clin. Investig. 2004;114:427–437. doi: 10.1172/JCI200420479.
    1. Shimizu K., Shichiri M., Libby P., Lee R.T., Mitchell R.N. Th2-Predominant Inflammation and Blockade of IFN-γ Signaling Induce Aneurysms in Allografted Aortas. J. Clin. Investig. 2004;114:300–308. doi: 10.1172/JCI200419855.
    1. Geng Y.J., Henderson L.E., Levesque E.B., Muszynski M., Libby P. Fas Is Expressed in Human Atherosclerotic Intima and Promotes Apoptosis of Cytokine-Primed Human Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 1997;17:2200–2208. doi: 10.1161/01.ATV.17.10.2200.
    1. Major A.S., Wilson M.T., McCaleb J.L., Su Y.R., Stanic A.K., Joyce S., van Kaer L., Fazio S., Linton M.F. Quantitative and Qualitative Differences in Proatherogenic NKT Cells in Apolipoprotein E-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 2004;24:2351–2357. doi: 10.1161/01.ATV.0000147112.84168.87.
    1. Melian A., Geng Y.J., Sukhova G.K., Libby P., Porcelli S.A. Cd1 Expression in Human Atherosclerosis. A Potential Mechanism for T Cell Activation by Foam Cells. Am. J. Pathol. 1999;155:775–786.
    1. Paulsson G., Zhou X., Tornquist E., Hansson G.K. Oligoclonal T Cell Expansions in Atherosclerotic Lesions of Apolipoprotein E-Deficient Mice. Arterioscler. Thromb. Vasc. Biol. 2000;20:10–17. doi: 10.1161/01.ATV.20.1.10.
    1. Tupin E., Nicoletti A., Elhage R., Rudling M., Ljunggren H.G., Hansson G.K., Berne G.P. CD1D-Dependent Activation of NKT Cells Aggravates Atherosclerosis. J. Exp. Med. 2004;199:417–422. doi: 10.1084/jem.20030997.
    1. Bot I., de Jager S.C., Zernecke A., Lindstedt K.A., van Berkel T.J., Weber C., Biessen E.A. Perivascular Mast Cells Promote Atherogenesis and Induce Plaque Destabilization in Apolipoprotein E–Deficient Mice. Circulation. 2007;115:2516–2525. doi: 10.1161/CIRCULATIONAHA.106.660472.
    1. Lindstedt K.A., Mäyränpää M.I., Kovanen P.T. Mast Cells in Vulnerable Atherosclerotic Plaques—A View to a Kill. J. Cell Mol. Med. 2007;11:739–758. doi: 10.1111/j.1582-4934.2007.00052.x.
    1. Lee M., Calabresi L., Chiesa G., Franceschini G., Kovanen P.T. Mast Cell Chymase Degrades ApoE and ApoA-II in ApoA-I–Knockout Mouse Plasma and Reduces Its Ability to Promote Cellular Cholesterol Efflux. Arterioscler. Thromb. Vasc. Biol. 2002;22:1475–1481. doi: 10.1161/01.ATV.0000029782.84357.68.
    1. Sun J., Sukhova G.K., Wolters P.J., Yang M., Kitamoto S., Libby P., MacFarlane L.A., Clair J.M., Shi G.P. Mast Cells Promote Atherosclerosis by Releasing Proinflammatory Cytokines. Nat. Med. 2007;13:719–724. doi: 10.1038/nm1601.
    1. Binder C.J., Shaw P.X., Chang M.K., Boullier A., Hartvigsen K., Horkko S., Miller Y.I., Woelkers D.A., Corr M., Witztum J.L. The Role of Natural Antibodies in Atherogenesis. J. Lipid Res. 2005;46:1353–1363. doi: 10.1194/jlr.R500005-JLR200.
    1. Caligiuri G., Nicoletti A., Poirier B., Hansson G.K. Protective Immunity against Atherosclerosis Carried by B Cells of Hypercholesterolemic Mice. J. Clin. Investig. 2002;109:745–753. doi: 10.1172/JCI7272.
    1. Major A.S., Fazio S., Linton M.F. B-Lymphocyte Deficiency Increases Atherosclerosis in LDL Receptor-Null Mice. Arterioscler. Thromb. Vasc. Biol. 2002;22:1892–1898. doi: 10.1161/.
    1. Shaw P.X., Horkko S., Chang M.K., Curtiss L.K., Palinski W., Silverman G.J., Witztum J.L. Natural Antibodies with the T15 Idiotype May Act in Atherosclerosis, Apoptotic Clearance, and Protective Immunity. J. Clin. Investig. 2000;105:1731–1740. doi: 10.1172/JCI8472.
    1. Schulz C., Massberg S. Platelets in Atherosclerosis and Thrombosis. Handb. Exp. Pharmacol. 2012:111–133.
    1. Lievens D., von Hundelshausen P. Platelets in Atherosclerosis. Thromb. Haemost. 2011;106:827–838. doi: 10.1160/TH11-08-0592.
    1. Huo Y., Ley K.F. Role of Platelets in the Development of Atherosclerosis. Trends Cardiovasc. Med. 2004;14:18–22. doi: 10.1016/j.tcm.2003.09.007.
    1. Badimon L., Padró T., Vilahur G. Atherosclerosis, Platelets and Thrombosis in Acute Ischaemic Heart Disease. Eur. Heart J. Acute Cardiovasc. Care. 2012;1:60–74. doi: 10.1177/2048872612441582.
    1. Koltai K., Kesmarky G., Feher G., Tibold A., Toth K. Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications. Int. J. Mol. Sci. 2017;18:1803. doi: 10.3390/ijms18081803.
    1. Andrews R.K., Berndt M.C. Platelet Physiology and Thrombosis. Thromb. Res. 2004;114:447–453. doi: 10.1016/j.thromres.2004.07.020.
    1. Ruggeri Z.M., Bader R., de Marco L. Glanzmann Thrombasthenia: Deficient Binding of Von Willebrand Factor to Thrombin-Stimulated Platelets. Proc. Natl. Acad. Sci. USA. 1982;79:6038–6041. doi: 10.1073/pnas.79.19.6038.
    1. Ni H., Denis C.V., Subbarao S., Degen J.L., Sato T.N., Hynes R.O., Wagner D.D. Persistence of Platelet Thrombus Formation in Arterioles of Mice Lacking Both Von Willebrand Factor and Fibrinogen. J. Clin. Investig. 2000;106:385–392. doi: 10.1172/JCI9896.
    1. Hantgan R.R. Fibrin Protofibril and Fibrinogen Binding to ADP-Stimulated Platelets: Evidence for a Common Mechanism. Biochim. Biophys. Acta. 1988;968:24–35. doi: 10.1016/0167-4889(88)90040-7.
    1. Bennett J.S., Vilaire G. Exposure of Platelet Fibrinogen Receptors by ADP and Epinephrine. J. Clin. Investig. 1979;64:1393–1401. doi: 10.1172/JCI109597.
    1. Das U.N. Atherosclerosis and Prostaglandins. Int. J. Tissue React. 1982;4:127–132.
    1. Martínez-Sánchez S.M., Minguela A., Prieto-Merino D., Zafrilla-Rentero M.P., Abellán-Alemán J., Montoro-García S. The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients. 2017;9:321. doi: 10.3390/nu9040321.
    1. Molica F., Stierlin F.B., Fontana P., Kwak B.R. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int. J. Mol. Sci. 2017;18:850. doi: 10.3390/ijms18040850.
    1. Virmani R., Burke A.P., Farb A. Plaque Rupture and Plaque Erosion. Thromb. Haemost. 1999;82:1–3.
    1. Lafont A. Basic Aspects of Plaque Vulnerability. Heart. 2003;89:1262–1267. doi: 10.1136/heart.89.10.1262.
    1. Hansson G.K., Libby P., Tabas I. Inflammation and Plaque Vulnerability. J. Int. Med. 2015;278:483–493. doi: 10.1111/joim.12406.
    1. Shah P.K. Mechanisms of Plaque Vulnerability and Rupture. J. Am. Coll. Cardiol. 2003;41:S15–S22. doi: 10.1016/S0735-1097(02)02834-6.

Source: PubMed

3
Abonnieren