Gamma oscillations and application of 40-Hz audiovisual stimulation to improve brain function

Xixi Chen, Xiaolong Shi, Yuwei Wu, Zhiqing Zhou, Songmei Chen, Yan Han, Chunlei Shan, Xixi Chen, Xiaolong Shi, Yuwei Wu, Zhiqing Zhou, Songmei Chen, Yan Han, Chunlei Shan

Abstract

Background: Audiovisual stimulation, such as auditory stimulation, light stimulation, and audiovisual combined stimulation, as a non-invasive stimulation, which can induce gamma oscillation, has received increased attention in recent years, and it has been preliminarily applied in the clinical rehabilitation of brain dysfunctions, such as cognitive, language, motor, mood, and sleep dysfunctions. However, the exact mechanism underlying the therapeutic effect of 40-Hz audiovisual stimulation remains unclear; the clinical applications of 40-Hz audiovisual stimulation in brain dysfunctions rehabilitation still need further research.

Objective: In order to provide new insights into brain dysfunction rehabilitation, this review begins with a discussion of the mechanism underlying 40-Hz audiovisual stimulation, followed by a brief evaluation of its clinical application in the rehabilitation of brain dysfunctions.

Results: Currently, 40-Hz audiovisual stimulation was demonstrated to affect synaptic plasticity and modify the connection status of related brain networks in animal experiments and clinical trials. Although its promising efficacy has been shown in the treatment of cognitive, mood, and sleep impairment, research studies into its application in language and motor dysfunctions are still ongoing.

Conclusions: Although 40-Hz audiovisual stimulation seems to be effective in treating cognitive, mood, and sleep disorders, its role in language and motor dysfunctions has yet to be determined.

Keywords: 40-Hz; auditory stimulation; brain dysfunction; light stimulation.

Conflict of interest statement

The authors have no conflicts of interest to disclose.

© 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

References

    1. Adaikkan, C. , Middleton, S. J. , Marco, A. , Pao, P. C. , Mathys, H. , Kim, D. N. , Gao, F. , Young, J. Z. , Suk, H. J. , Boyden, E. S. , McHugh, T. J. , & Tsai, L. H. (2019). Gamma entrainment binds higher‐order brain regions and offers neuroprotection. Neuron, 102(5), 929–943.e8. 10.1016/j.neuron.2019.04.011
    1. Adaikkan, C. , & Tsai, L. H. (2020). Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends in Neurosciences, 43(1), 24–41. 10.1016/j.tins.2019.11.001
    1. Agger, M. P. , Carstensen, M. S. , Henney, M. A. , Hansen, L. S. , Baandrup, A. O. , Nguyen, M. , Petersen, P. M. , Madsen, K. H. , & Kjær, T. W. (2022). Novel invisible spectral flicker induces 40 Hz neural entrainment with similar spatial distribution as 40 Hz stroboscopic light. Journal of Alzheimer's Disease, 88(1), 335. 10.3233/jad-220081
    1. Alho, J. , Lin, F. H. , Sato, M. , Tiitinen, H. , Sams, M. , & Jaaskelainen, I. P. (2014). Enhanced neural synchrony between left auditory and premotor cortex is associated with successful phonetic categorization. Frontiers in Psychology, 5, 394. 10.3389/fpsyg.2014.00394
    1. Auksztulewicz, R. , Barascud, N. , Cooray, G. , Nobre, A. C. , Chait, M. , & Friston, K. (2017). The cumulative effects of predictability on synaptic gain in the auditory processing stream. Journal of Neuroscience, 37(28), 6751–6760. 10.1523/JNEUROSCI.0291-17.2017
    1. Avila, J. (2006). Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Letters, 580(12), 2922–2927. 10.1016/j.febslet.2006.02.067
    1. Bushara, K. O. , Grafman, J. , & Hallett, M. (2001). Neural correlates of auditory–visual stimulus onset asynchrony detection. The Journal of Neuroscience, 21(1), 300–304. 10.1523/jneurosci.21-01-00300.2001
    1. Buzsáki, G. , & Wang, X. J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225. 10.1146/annurev-neuro-062111-150444
    1. Castro, S. , Cavelli, M. , Vollono, P. , Chase, M. H. , Falconi, A. , & Torterolo, P. (2014). Inter‐hemispheric coherence of neocortical gamma oscillations during sleep and wakefulness. Neuroscience Letters, 578, 197–202. 10.1016/j.neulet.2014.06.044
    1. Castro, S. , Falconi, A. , Chase, M. H. , & Torterolo, P. (2013). Coherent neocortical 40‐Hz oscillations are not present during REM sleep. European Journal of Neuroscience, 37(8), 1330–1339. 10.1111/ejn.12143
    1. Chan, D. , Suk, H. J. , Jackson, B. , Milman, N. P. , Stark, D. , Klerman, E. B. , Kitchener, E. , Avalos, V. S. F. , Banerjee, A. , Beach, S. D. , Blanchard, J. , Stearns, C. , Boes, A. , Uiterma, B. , & Beach, S. D. (2021). Gamma frequency sensory stimulation in probable mild Alzheimer's dementia patients: Results of a preliminary clinical trial. medRxiv, 10.1101/2021.03.01.21252717
    1. Cimenser, A. , Hempel, E. , Travers, T. , Strozewski, N. , Martin, K. , Malchano, Z. , & Hajos, M. (2021). Sensory‐evoked 40‐Hz gamma oscillation improves sleep and daily living activities in Alzheimer's disease patients. Frontiers in Systems Neuroscience, 15, 746859. 10.3389/fnsys.2021.746859
    1. Clements‐Cortes, A. , Ahonen, H. , Evans, M. , Freedman, M. , & Bartel, L. (2016). Short‐term effects of rhythmic sensory stimulation in Alzheimer's disease: An exploratory pilot study. Journal of Alzheimer's Disease, 52(2), 651–660. 10.3233/JAD-160081
    1. Clouter, A. , Shapiro, K. L. , & Hanslmayr, S. (2017). Theta phase synchronization is the glue that binds human associative memory. Current Biology, 27(20), 3143–3148.e6. 10.1016/j.cub.2017.09.001
    1. Crasta, J. E. , Thaut, M. H. , Anderson, C. W. , Davies, P. L. , & Gavin, W. J. (2018). Auditory priming improves neural synchronization in auditory‐motor entrainment. Neuropsychologia, 117, 102–112. 10.1016/j.neuropsychologia.2018.05.017
    1. Dvorak, D. , Radwan, B. , Sparks, F. T. , Talbot, Z. N. , & Fenton, A. A. (2018). Control of recollection by slow gamma dominating mid‐frequency gamma in hippocampus CA1. PLoS Biology, 16(1), e2003354. 10.1371/journal.pbio.2003354
    1. Engelbregt, H. , Barmentlo, M. , Keeser, D. , Pogarell, O. , & Deijen, J. B. (2021). Effects of binaural and monaural beat stimulation on attention and EEG. Experimental Brain Research, 239(9), 2781–2791. 10.1007/s00221-021-06155-z
    1. Fatemi, S. N. , Sedghizadeh, M. J. , & Aghajan, H. (2022). Theta‐gamma phase‐amplitude coupling explains the advantage of auditory plus visual gamma entrainment in Alzheimer's therapy. Alzheimer's & Dementia, 17(S7), e053451. 10.1002/alz.053451
    1. Franz, J. R. , Francis, C. , Allen, M. , & Thelen, D. G. (2017). Visuomotor entrainment and the frequency‐dependent response of walking balance to perturbations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8), 1132–1142. 10.1109/TNSRE.2016.2603340
    1. Garza, K. M. , Zhang, L. , Borron, B. , Wood, L. B. , & Singer, A. C. (2020). Gamma visual stimulation induces a neuroimmune signaling profile distinct from acute neuroinflammation. Journal of Neuroscience, 40(6), 1211–1225. 10.1523/JNEUROSCI.1511-19.2019
    1. Grose, J. H. , & Mamo, S. K. (2012). Electrophysiological measurement of binaural beats: Effects of primary tone frequency and observer age. Ear and Hearing, 33(2), 187–194. 10.1097/AUD.0b013e318230bbbd
    1. Gross, J. , Pollok, B. , Dirks, M. , Timmermann, L. , Butz, M. , & Schnitzler, A. (2005). Task‐dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26(1), 91–98. 10.1016/j.neuroimage.2005.01.025
    1. Gruber, T. , Tsivilis, D. , Montaldi, D. , & Muller, M. M. (2004). Induced gamma band responses: An early marker of memory encoding and retrieval. NeuroReport, 15(11), 1837–1841. 10.1097/01.wnr.0000137077.26010.12
    1. Guerra, A. , Asci, F. , D'Onofrio, V. , Sveva, V. , Bologna, M. , Fabbrini, G. , Berardelli, A. , & Suppa, A. (2020). Enhancing gamma oscillations restores primary motor cortex plasticity in Parkinson's disease. Journal of Neuroscience, 40(24), 4788–4796. 10.1523/JNEUROSCI.0357-20.2020
    1. Guerra, A. , Suppa, A. , Asci, F. , De Marco, G. , D'Onofrio, V. , Bologna, M. , Di Lazzaro, V. , & Berardelli, A. (2019). LTD‐like plasticity of the human primary motor cortex can be reversed by gamma‐tACS. Brain Stimulation, 12(6), 1490–1499. 10.1016/j.brs.2019.06.029
    1. Gurtubay, I. G. , Alegre, M. , Labarga, A. , Malanda, A. , & Artieda, J. (2004). Gamma band responses to target and non‐target auditory stimuli in humans. Neuroscience Letters, 367(1), 6–9. 10.1016/j.neulet.2004.05.104
    1. Gwin, J. T. , & Ferris, D. P. (2012). Beta‐ and gamma‐range human lower limb corticomuscular coherence. Frontiers in Human Neuroscience, 6, 258. 10.3389/fnhum.2012.00258
    1. He, Q. , Colon‐Motas, K. M. , Pybus, A. F. , Piendel, L. , Seppa, J. K. , Walker, M. L. , Manzanares, C. M. , Qiu, D. , Miocinovic, S. , Wood, L. B. , Levey, A. I. , Lah, J. J. , & Singer, A. C. (2021). A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer's disease. Alzheimer's & Dementia (N Y), 7(1), e12178. 10.1002/trc2.12178
    1. Herrmann, C. S. (2001). Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3–4), 346–353. 10.1007/s002210100682
    1. Herrmann, C. S. , Lenz, D. , Junge, S. , Busch, N. A. , & Maess, B. (2004). Memory‐matches evoke human gamma‐responses. BMC Neuroscience, 5(1), 1–8. 10.1186/1471-2202-5-13
    1. Hughes, J. R. (2008). Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy & Behavior, 13(1), 25–31. 10.1016/j.yebeh.2008.01.011
    1. Ismail, R. , Hansen, A. K. , Parbo, P. , Braendgaard, H. , Gottrup, H. , Brooks, D. J. , & Borghammer, P. (2018). The effect of 40‐Hz light therapy on amyloid load in patients with prodromal and clinical Alzheimer's disease. International Journal of Alzheimer's Disease, 2018, 6852303. 10.1155/2018/6852303
    1. Iurilli, G. , Ghezzi, D. , Olcese, U. , Lassi, G. , Nazzaro, C. , Tonini, R. , Tucci, V. , Benfenati, F. , & Medini, P. (2012). Sound‐driven synaptic inhibition in primary visual cortex. Neuron, 73(4), 814–828. 10.1016/j.neuron.2011.12.026
    1. Ivry, R. B. (2018). Entrainment and maintenance of an internal metronome in supplementary motor area. eLife, 7, e38983. 10.7554/eLife.38983.027
    1. Jakob‐Roetne, R. , & Jacobsen, H. (2009). Alzheimer's disease: From pathology to therapeutic approaches. Angewandte Chemie International Edition in English, 48(17), 3030–3059. 10.1002/anie.200802808
    1. Jirakittayakorn, N. , & Wongsawat, Y. (2017). Brain responses to 40‐Hz binaural beat and effects on emotion and memory. International Journal of Psychophysiology, 120, 96–107. 10.1016/j.ijpsycho.2017.07.010
    1. Jones, M. , McDermott, B. , Oliveira, B. L. , O'Brien, A. , Coogan, D. , Lang, M. , Moriarty, N. , Dowd, E. , Quinlan, L. , Ginley, B. M. , Dunne, E. , Newell, D. , Porter, E. , Elahi, M. A. , Hall, M. O. , & Shahzad, A. (2019). Gamma band light stimulation in human case studies: Groundwork for potential Alzheimer's disease treatment. Journal of Alzheimer's Disease, 70(1), 171–185. 10.3233/JAD-190299
    1. Karthik, G. , Plass, J. , Beltz, A. M. , Liu, Z. , Grabowecky, M. , Suzuki, S. , Stacey, W. C. , Wasade, V. S. , Towle, V. L. , Wu, S. , Issa, N. P. , Brang, D. , & Tao, J. X. (2021). Visual speech differentially modulates beta, theta, and high gamma bands in auditory cortex. European Journal of Neuroscience, 54(9), 7301–7317. 10.1111/ejn.15482
    1. Kay, L. M. (2003). Two species of gamma oscillations in the olfactory bulb: Dependence on behavioral state and synaptic interactions. Journal of Integrative Neuroscience, 2(1), 31–44. 10.1142/s0219635203000196
    1. Kuwada, S. , Yin, T. C. , & Wickesberg, R. E. (1979). Response of cat inferior colliculus neurons to binaural beat stimuli: Possible mechanisms for sound localization. Science, 206(4418), 586–588. 10.1126/science.493964
    1. Lee, J. , Ryu, S. , Kim, H. J. , Jung, J. , Lee, B. , & Kim, T. (2018). 40 Hz acoustic stimulation decreases amyloid beta and modulates brain rhythms in a mouse model of Alzheimer's disease. bioRxiv, 390302, 10.1101/390302
    1. Lee, K. , Park, Y. , Suh, S. W. , Kim, S. S. , Kim, D. W. , Lee, J. , Park, J. , Yoo, S. , & Kim, K. W. (2021). Optimal flickering light stimulation for entraining gamma waves in the human brain. Scientific Reports, 11(1), 16206. 10.1038/s41598-021-95550-1
    1. Lee, Y. Y. , Lin, K. C. , Cheng, H. J. , Wu, C. Y. , Hsieh, Y. W. , & Chen, C. K. (2015). Effects of combining robot‐assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: A double‐blinded randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 12(1), 1–10. 10.1186/s12984-015-0088-3
    1. Lewis, A. G. , & Bastiaansen, M. (2015). A predictive coding framework for rapid neural dynamics during sentence‐level language comprehension. Cortex, 68, 155–168. 10.1016/j.cortex.2015.02.014
    1. Lewis, A. G. , Schoffelen, J. M. , Schriefers, H. , & Bastiaansen, M. (2016). A predictive coding perspective on beta oscillations during sentence‐level language comprehension. Frontiers in Human Neuroscience, 10, 85. 10.3389/fnhum.2016.00085
    1. Lin, Z. , Hou, G. , Yao, Y. , Zhou, Z. , Zhu, F. , Liu, L. , Zeng, L. , Yang, Y. , & Ma, J. (2021). 40‐Hz blue light changes hippocampal activation and functional connectivity underlying recognition memory. Frontiers in Human Neuroscience, 15, 739333. 10.3389/fnhum.2021.739333
    1. Lukiw, W. J. (2020). Treating Alzheimer's disease (AD) with light and sound. Journal of Alzheimers Disease & Parkinsonism, 10(2), 487.
    1. Mably, A. J. , & Colgin, L. L. (2018). Gamma oscillations in cognitive disorders. Current Opinion in Neurobiology, 52, 182–187. 10.1016/j.conb.2018.07.009
    1. Malcolm, M. P. , Massie, C. , & Thaut, M. (2009). Rhythmic auditory‐motor entrainment improves hemiparetic arm kinematics during reaching movements: A pilot study. Topics in Stroke Rehabilitation, 16(1), 69–79. 10.1310/tsr1601-69
    1. Marchesotti, S. , Nicolle, J. , Merlet, I. , Arnal, L. H. , Donoghue, J. P. , & Giraud, A. L. (2020). Selective enhancement of low‐gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia. PLoS Biology, 18(9), e3000833. 10.1371/journal.pbio.3000833
    1. Martorell, A. J. , Paulson, A. L. , Suk, H. J. , Abdurrob, F. , Drummond, G. T. , Guan, W. , Young, J. Z. , Kim, D. N. , Kritskiy, O. , Barker, S. J. , Mangena, V. , Prince, S. M. , Brown, E. N. , Chung, K. , Boyden, E. S. , Singer, A. C. , & Tsai, L. H. (2019). Multi‐sensory gamma stimulation ameliorates Alzheimer's‐associated pathology and improves cognition. Cell, 177(2), 256–271.e22. 10.1016/j.cell.2019.02.014
    1. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125–139. 10.1016/s0959-4752(02)00016-6
    1. Meyer, L. (2018). The neural oscillations of speech processing and language comprehension: State of the art and emerging mechanisms. European Journal of Neuroscience, 48(7), 2609–2621. 10.1111/ejn.13748
    1. Gazzaniga, M. S. , Ivry, R. B. , & Mangun, G. R. (2009). Cognitive Neuroscience: The Biology of the Mind(3rd ed.). New York: W.W. Norton & Company.
    1. Miyaguchi, S. , Otsuru, N. , Kojima, S. , Saito, K. , Inukai, Y. , Masaki, M. , & Onishi, H. (2018). Transcranial alternating current stimulation with gamma oscillations over the primary motor cortex and cerebellar hemisphere improved visuomotor performance. Frontiers in Behavioral Neuroscience, 12, 132. 10.3389/fnbeh.2018.00132
    1. Morrill, R. J. , & Hasenstaub, A. R. (2018). Visual information present in infragranular layers of mouse auditory cortex. Journal of Neuroscience, 38(11), 2854–2862. 10.1523/JNEUROSCI.3102-17.2018
    1. Nardini, M. , Bales, J. , & Mareschal, D. (2016). Integration of audio‐visual information for spatial decisions in children and adults. Developmental Science, 19(5), 803–816. 10.1111/desc.12327
    1. Nazari, M. , Vajed‐Samiei, T. , Torabi, N. , Fahanik‐Babaei, J. , Saghiri, R. , Khodagholi, F. , & Eliassi, A. (2022). The 40‐Hz white light‐emitting diode (LED) improves the structure‐function of the brain mitochondrial KATP channel and respiratory chain activities in amyloid beta toxicity. Molecular Neurobiology, 59(4), 2424–2440. 10.1007/s12035-021-02681-7
    1. Noda, Y. , Takano, M. , Hayano, M. , Li, X. , Wada, M. , Nakajima, S. , Mimura, M. , Kondo, S. , & Tsubota, K. (2021). Photobiological neuromodulation of resting‐state eeg and steady‐state visual‐evoked potentials by 40 Hz violet light optical stimulation in healthy individuals. Journal of Personalized Medicine, 11(6), 557. 10.3390/jpm11060557
    1. Nowak, M. , Hinson, E. , Ede, F. V. , Pogosyan, A. , Guerra, A. , Quinn, A. , Brown, P. , & Stagg, C. (2017). P215 driving human motor cortical oscillations leads to behaviourally relevant changes in local GABA(A) inhibition: A tACS‐TMS study. Clinical Neurophysiology, 128(9), 4481–4492. 10.1016/j.clinph.2017.07.223
    1. Ozker, M. , Yoshor, D. , & Beauchamp, M. S. (2018). Converging evidence from electrocorticography and BOLD fMRI for a sharp functional boundary in superior temporal gyrus related to multisensory speech processing. Frontiers in Human Neuroscience, 12, 141. 10.3389/fnhum.2018.00141
    1. Pan, L. ‐L. H. , Yang, W. ‐W. , Kao, C. ‐L. , Tsai, M. ‐W. , Wei, S. ‐H. , Fregni, F. , Chen, V. C. , & Chou, L. ‐W. (2018). Effects of 8‐week sensory electrical stimulation combined with motor training on EEG‐EMG coherence and motor function in individuals with stroke. Scientific Reports, 8(1), 1–10. 10.1038/s41598-018-27553-4
    1. Park, Y. , Lee, K. , Kim, S. S. , Kim, D. W. , Park, J. , Yoo, S. , & Kim, K. W. (2022). Optimal parameters for propagating gamma brain waves using flickering lights in human. Alzheimer's & Dementia, 17(S7), e054823. 10.1002/alz.054823
    1. Pastor, M. A. , Artieda, J. , Arbizu, J. , Marti‐Climent, J. M. , Peñuelas, I. , & Masdeu, J. C. (2002). Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. The Journal of Neuroscience, 22(23), 10501–10506. 10.1523/jneurosci.22-23-10501.2002
    1. Rager, G. , & Singer, W. (1998). The response of cat visual cortex to flicker stimuli of variable frequency. European Journal of Neuroscience, 10(5), 1856–1877. 10.1046/j.1460-9568.1998.00197.x
    1. Raij, T. , Ahveninen, J. , Lin, F. H. , Witzel, T. , Jaaskelainen, I. P. , Letham, B. , Israeli, E. , Sahyoun, C. , Vasios, C. , Stufflebeam, S. , Hämäläinen, M. , & Belliveau, J. W. (2010). Onset timing of cross‐sensory activations and multisensory interactions in auditory and visual sensory cortices. European Journal of Neuroscience, 31(10), 1772–1782. 10.1111/j.1460-9568.2010.07213.x
    1. Salenius, S. , Salmelin, R. , Neuper, C. , Pfurtscheller, G. , & Hari, R. (1996). Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neuroscience Letters, 213(2), 75–78. 10.1016/0304-3940(96)12796-8
    1. Schoffelen, J. M. , Oostenveld, R. , & Fries, P. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. Science, 308(5718), 111–113. 10.1126/science.1107027
    1. Schwarz, D. W. , & Taylor, P. (2005). Human auditory steady state responses to binaural and monaural beats. Clinical Neurophysiology, 116(3), 658–668. 10.1016/j.clinph.2004.09.014
    1. Sharpe, R. L. S. , Mahmud, M. , Kaiser, M. S. , & Chen, J. (2020). Gamma entrainment frequency affects mood, memory and cognition: An exploratory pilot study. Brain Informatics, 7(1), 17. 10.1186/s40708-020-00119-9
    1. Soteropoulos, D. S. , & Baker, S. N. (2006). Cortico‐cerebellar coherence during a precision grip task in the monkey. Journal of Neurophysiology, 95(2), 1194–1206. 10.1152/jn.00935.2005
    1. Soto‐Faraco, S. , Spence, C. , & Kingstone, A. (2005). Assessing automaticity in the audiovisual integration of motion. Acta psychologica (Amst), 118(1–2), 71–92. 10.1016/j.actpsy.2004.10.008
    1. Suk, H. J. , Chan, D. , Jackson, B. , Fernandez, V. , Stark, D. , Milman, N. , Beach, S. , Uitermarkt, B. , Gander, P. , Boes, A. D. , Brown, E. , Boyden, E. , & Tsai, L. H. (2020). Sensory gamma frequency stimulation in cognitively healthy and AD individuals safely induces highly coordinated 40 Hz neural oscillation: A preliminary study of non‐invasive sensory stimulation for treating Alzheimer's disease. Alzheimer's & Dementia, 16(S7), e041146. 10.1002/alz.041146
    1. Tallon‐Baudry, C. , Bertrand, O. , Henaff, M. A. , Isnard, J. , & Fischer, C. (2005). Attention modulates gamma‐band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex, 15(5), 654–662. 10.1093/cercor/bhh167
    1. Tian, T. , Qin, X. , Wang, Y. , Shi, Y. , & Yang, X. (2021). 40 Hz light flicker promotes learning and memory via long term depression in wild‐type mice. Journal of Alzheimer's Disease, 84(3), 983–993. 10.3233/JAD-215212
    1. Torterolo, P. , Castro‐Zaballa, S. , Cavelli, M. , Chase, M. H. , & Falconi, A. (2016). Neocortical 40 Hz oscillations during carbachol‐induced rapid eye movement sleep and cataplexy. European Journal of Neuroscience, 43(4), 580–589. 10.1111/ejn.13151
    1. Wang, L. , Hagoort, P. , & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432–447. 10.1162/jocn_a_01190
    1. You, J. , Xu, M. , Li, R. , Wang, Z. , Liu, S. , & Ming, D. (2020). 40‐Hz rhythmic visual stimulation facilitates attention by reshaping the brain functional connectivity. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC): Vol. 2020. (pp. 2873–2876). IEEE. 10.1109/EMBC44109.2020.9175356
    1. Zaehle, T. , Lenz, D. , Ohl, F. W. , & Herrmann, C. S. (2010). Resonance phenomena in the human auditory cortex: Individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Experimental Brain Research, 203(3), 629–635. 10.1007/s00221-010-2265-8
    1. Zhang, Y. , Zhang, Z. , Luo, L. , Tong, H. , Chen, F. , & Hou, S. T. (2021). 40 Hz light flicker alters human brain electroencephalography microstates and complexity implicated in brain diseases. Frontiers in Neuroscience, 15, 777183. 10.3389/fnins.2021.777183
    1. Zheng, L. , Yu, M. , Lin, R. , Wang, Y. , Zhuo, Z. , Cheng, N. , Wang, M. , Tang, Y. , Wang, L. , & Hou, S. T. (2020). Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nature Communications, 11(1), 3012. 10.1038/s41467-020-16826-0

Source: PubMed

3
Abonnieren