Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects

Howard A Smithline, Michael Donnino, David J Greenblatt, Howard A Smithline, Michael Donnino, David J Greenblatt

Abstract

Background: High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects.

Methods: This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated.

Results: The AUC₀₋₁₀ hr and C(max) values increased nonlinearly between 100 mg and 1500 mg. The slope of the AUC₀₋₁₀ hr vs dose, as well as the C(max) vs dose, plots are steepest at the lowest thiamine doses.

Conclusion: Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process.

Trial registration: ClinicalTrials.gov: NCT00981877.

Figures

Figure 1
Figure 1
Oral Thiamine Whole Blood Concentration vs Time Plot. The concentration of thiamine in plasma from 0 hour to 10 hours after 100 mg (♦), 500 mg (●) and 1500 mg (■) of oral thiamine. Error bars are standard deviations.
Figure 2
Figure 2
Oral Thiamine Plasma Concentration vs Time Plot. The concentration of thiamine in whole blood from 0 hour to 10 hours after 100 mg (♦), 500 mg (●) and 1500 mg (■) of oral thiamine. Error bars are standard deviations.
Figure 3
Figure 3
Semi-log Plot of the Terminal Phase of Oral Thiamine Whole Blood Concentration vs Time. The concentration of thiamine in whole blood from 4 hour to 10 hours after 100 mg (♦), 500 mg (●) and 1500 mg (■) of oral thiamine.
Figure 4
Figure 4
Semi-log Plot of the Terminal Phase of Oral Thiamine Plasma Concentration vs Time. The concentration of thiamine in plasma from 4 hour to 10 hours after 100 mg (♦), 500 mg (●) and 1500 mg (■) of oral thiamine.
Figure 5
Figure 5
Whole Blood 0 to 10 Hour AUC vs Thiamine Dose Plot. The mean area under the curve values for whole blood thiamine measures from time 0 hour to time 10 hours vs thiamine dose after 0 mg, 100 mg, 500 mg and 1500 mg of oral thiamine. Error bars are 95% confidence intervals.
Figure 6
Figure 6
Plasma 0 to 10 Hour AUC vs Thiamine Dose Plot. The mean area under the curve values for plasma thiamine measures from time 0 hour to time 10 hours vs thiamine dose after 0 mg, 100 mg, 500 mg and 1500 mg of oral thiamine. Error bars are 95% confidence intervals.
Figure 7
Figure 7
Whole Blood Cmax vs Thiamine Dose Plot. The mean maximum whole blood thiamine concentration between time 0 hour and time 10 hours vs thiamine dose after 0 mg, 100 mg, 500 mg and 1500 mg of oral thiamine. Error bars are 95% confidence intervals.
Figure 8
Figure 8
Plasma Cmax vs Thiamine Dose Plot. The mean maximum whole blood thiamine concentration between time 0 hour and time 10 hours vs thiamine dose after 0 mg, 100 mg, 500 mg and 1500 mg of oral thiamine. Error bars are 95% confidence intervals.

References

    1. Young RC, Blass JP. Iatrogenic nutritional deficiencies. Annu Rev Nutr. 1982;2:201–227. doi: 10.1146/annurev.nu.02.070182.001221.
    1. Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A. The multifaceted therapeutic potential of benfotiamine. Pharmacol Res. 2010;61:482–488. doi: 10.1016/j.phrs.2010.02.008.
    1. Donnino M, Carney E, Cocchi M, Barbash I. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010;25:576–581. doi: 10.1016/j.jcrc.2010.03.003.
    1. Donnino MW, Cocchi MN, Smithline H, Carney E, Chou PP, Salciccioli J. Coronary artery bypass graft surgery depletes plasma thiamine levels. Nutrition. 2010;26:133–136. doi: 10.1016/j.nut.2009.06.004.
    1. Soukoulis V, Dihu JB, Sole M, Anker SD, Cleland J, Fonarow GC, Metra M, Pasini E, Strzelczyk T, Taegtmeyer H, Gheorghiade M. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol. 2009;54:1660–1673. doi: 10.1016/j.jacc.2009.08.012.
    1. Hartung E, Freye E. The effect of thiamine on the contractile responses of the isolated heart muscle. Acta Vitaminol Enzymol. 1980;2:3–5.
    1. Meador K, Loring D, Nichols M, Zamrini E, Rivner M, Posas H, Thompson E, Moore E. Preliminary findings of high-dose thiamine in dementia of Alzheimer's type. J Geriatr Psychiatry Neurol. 1993;6:222–229.
    1. Wolfson SK, Ellis S. Thiamine: toxicity and ganglionic blockade. Fed Proc. 1954;13:418.
    1. Thomson AD, Baker H, Leevy CM. Patterns of 35S-thiamine hydrochloride absorption in the malnourished alcoholic patient. J Lab Clin Med. 1970;76:34–45.
    1. Thomson AD. Mechanisms of vitamin deficiency in chronic alcohol misusers and the development of the Wernicke-Korsakoff syndrome. Alcohol Alcohol Suppl. 2000;35:2–7.
    1. Thomson AD, Leevy CM. Observations on the mechanism of thiamine hydrochloride absorption in man. Clin Sci. 1972;43:153–163.
    1. Volvert ML, Seyen S, Piette M, Evrard B, Gangolf M, Plumier JC, Bettendorff L. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol. 2008;8:10.
    1. Davis R, Icke G. In: Advances in Clinical Chemistry. Elsevier, editor. Vol. 23. 1983. Clinical chemistry of thiamin; pp. 93–140.
    1. Morrison AB, Campbell JA. Vitamin absorption studies. I. Factors influencing the excretion of oral test doses of thiamine and riboflavin by human subjects. J Nutr. 1960;72:435–440.
    1. Hoyumpa AM, Breen KJ, Schenker S, Wilson FA. Thiamine transport across the rat intestine. II. Effect of ethanol. J Lab Clin Med. 1975;86:803–816.
    1. Hoyumpa AM, Strickland R, Sheehan JJ, Yarborough G, Nichols S. Dual system of intestinal thiamine transport in humans. J Lab Clin Med. 1982;99:701–708.
    1. Hoyumpa AM, Middleton HM, Wilson FA, Schenker S. Thiamine transport across the rat intestine. I. Normal characteristics. Gastroenterol. 1975;68:1218–1227.
    1. Hoyumpa AM. Characterization of normal intestinal thiamin transport in animals and man. Ann NY Acad Sci. 1982;378:337–343. doi: 10.1111/j.1749-6632.1982.tb31208.x.
    1. Zielinska-Dawidziak M, Grajek K, Olejnik A, Czaczyk K, Grajek W. Transport of high concentration of thiamin, riboflavin and pyridoxine across intestinal epithelial cells Caco-2. J Nutr Sci Vitaminol. 2008;54:423–429. doi: 10.3177/jnsv.54.423.
    1. Thomson AD, Frank O, Baker H, Leevy CM. Thiamine propyl disulfide: absorption and utilization. Ann Intern Med. 1971;74:529–534.
    1. Weber W, Kewitz H. Determination of thiamine in human plasma and its pharmacokinetics. Eur J Clin Pharmacol. 1985;28:213–219. doi: 10.1007/BF00609694.
    1. Thomson AD. The Royal College of Physicians report on alcohol: guidelines for managing Wernicke's Encephalopathy in the accident and emergency department. Alcohol Alcohol. 2002;37:513–521.
    1. Wrenn KD, Murphy F, Slovis CM. A toxicity study of parenteral thiamine hydrochloride. Ann Emerg Med. 1989;18:867–870. doi: 10.1016/S0196-0644(89)80215-X.
    1. Barnerias C, Saudubray JM, Touati G, De Lonlay P, Dulac O, Ponsot G, Marsac C, Brivet M, Desguerre I. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1–e9. doi: 10.1111/j.1469-8749.2009.03541.x.
    1. Blass JP, Gleason P, Brush D, DiPonte P, Thaler H. Thiamine and Alzheimer's disease. A pilot study. Arch Neurol. 1988;45:833–835. doi: 10.1001/archneur.1988.00520320019008.
    1. Nolan KA, Black RS, Sheu KF, Langberg J, Blass JP. A trial of thiamine in Alzheimer's disease. Arch Neurol. 1991;48:81–83. doi: 10.1001/archneur.1991.00530130093025.
    1. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, Mijnhout GS, Bilo HJ, Gans RO, Navis GJ, Bakker SJ. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33:1598–1601. doi: 10.2337/dc09-2241.
    1. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116:600–605. doi: 10.1055/s-2008-1065351.
    1. Thornalley PJ. The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev. 2005;1:287–298. doi: 10.2174/157339905774574383.
    1. Tallaksen CME, Sande A. B?hmer T, Bell H, Karlsen J: Kinetics of thiamin and thiamin phosphate esters in human blood, plasma and urine after 50 mg intravenously or orally. Eur J Clin Pharmacol. 1993;44:73–78. doi: 10.1007/BF00315284.
    1. Baines M, Bligh JG, Madden JS. Tissue thiamin levels of hospitalised alcoholics before and after oral or parenteral vitamins. Alcohol Alcohol. 1988;23:49–52.
    1. Royer-Morrot MJ, Zhiri A, Paille F, Royer RJ. Plasma thiamine concentrations after intramuscular and oral multiple dosage regimens in healthy men. Eur J Clin Pharmacol. 1992;42:219–222. doi: 10.1007/BF00278489.
    1. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52:2110–2120. doi: 10.2337/diabetes.52.8.2110.
    1. Beltramo E, Berrone E, Buttiglieri S, Porta M. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev. 2004;20:330–336. doi: 10.1002/dmrr.470.
    1. Beltramo E, Nizheradze K, Berrone E, Tarallo S, Porta M. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev. 2009;25:647–656. doi: 10.1002/dmrr.1008.
    1. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem. 2006;281:9307–9313.
    1. Karachalias N, Babaei-Jadidi R, Kupich C, Ahmed N, Thornalley PJ. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci. 2005;1043:777–783. doi: 10.1196/annals.1333.090.
    1. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53:1506–1516. doi: 10.1007/s00125-010-1722-z.
    1. Frank T, Bitsch R, Maiwald J, Stein G. High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfotiamine. Eur J Clin Pharmacol. 2000;56:251–257. doi: 10.1007/s002280000131.
    1. Greb A, Bitsch R. Comparative bioavailability of various thiamine derivatives after oral administration. Int J Clin Pharmacol Ther. 1998;36:216–221.
    1. Stracke H, Hammes HP, Werkmann D, Mavrakis K, Bitsch I, Netzel M, Geyer J, Kopcke W, Sauerland C, Bretzel RG, Federlin KF. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes. 2001;109:330–336. doi: 10.1055/s-2001-17399.

Source: PubMed

3
Abonnieren