Diagnosis and subclassification of acute lymphoblastic leukemia

Sabina Chiaretti, Gina Zini, Renato Bassan, Sabina Chiaretti, Gina Zini, Renato Bassan

Abstract

Acute lymphoblastic leukemia (ALL) is a disseminated malignancy of B- or T-lymphoblasts which imposes a rapid and accurate diagnostic process to support an optimal risk-oriented therapy and thus increase the curability rate. The need for a precise diagnostic algorithm is underlined by the awareness that both ALL therapy and related success rates may vary greatly between ALL subsets, from standard chemotherapy in patients with standard-risk ALL, to allotransplantation (SCT) and targeted therapy in high-risk patients and cases expressing suitable biological targets, respectively. This review summarizes how best to identify ALL and the most relevant ALL subsets.

Figures

Figure 1
Figure 1
Common morphological variants of ALL. A) FAB L1 subtype: the lymphoblasts are small and the nuclear and cytoplasmic characteristics appear uniform with scant blue cytoplasm, regular nuclear shape, partially condensed chromatin with barely visible nucleoli and high nucleocytoplasmic ratio; B) FAB L2 subtype: the lymphoblasts are variable in size with irregular nuclear outlines, heterogeneous lacy chromatin, moderately plentiful weakly basophilic cytoplasm and variable nucleocytoplasmic ratio; C) FAB L3 subtype (Burkitt): the lymphoblasts are very large and quite homogeneous with finely granular stippled nuclear chromatin with prominent nucleoli. The cytoplasm is midnight blue and is vacuolated; the majority of such cases are now recognised as representing non-Hodgkin lymphoma rather than ALL. B) in this picture are displayed many lymphoblasts with ALL-L2 morphology and one lymphoblast (right side) with coarse azurophilic cytoplasmic granules.
Figure 2
Figure 2
Rare morphological variants of ALL and MPO negativity. A) ALL with hand-mirror cells: the shape of the elongated lymphoblasts resembles a hand mirror or a tennis racquet with a very high nucleocytoplasmic ratio. Almost all the blasts have a small polar cytoplasmic projection corresponding to a uropod; B) Eosinophil-associated ALL; C) Negative MPO reaction in ALL: a yellow-brown precipitate is visible only in a neutrophil metamyelocyte just to the center of the picture. All the other blast cells are completely peroxidase-negative.
Figure 3
Figure 3
Examples of ALL immunophenotype. A) Pro-B ALL: lymphoblasts are CD19, CD34, CD22, TdT and Cy CD79a positive and CD10 negative; B) Pre-B ALL: lymphoblasts are CD22, CD34, CD19, TdT, cytoplasmic (Cy)CD79a, CD10 and Cy mμ positive; C) Cortical/thymic TALL: Lymphoblasts are cyCD3, CD7, TdT, CD5, and CD1a positive.
Figure 4
Figure 4
Diagnosis and subclassification of adult ALL. To confirm diagnosis and obtain clinically useful information, it is necessary to 1) differentiate rapidly Ph-positive ALL from Ph-negative ALL in order to allow an early introduction of tyrosine kinase inhibitors in the former subset, 2) distinguish between different clinico-prognostic Ph- ALL subsets, and 3) clarify diagnostic issues related to the application of targeted therapy and risk-/minimal residual disease (MRD)-oriented therapy. The early diagnostic phase must be completed within 24–48 hours. Additional test for cytogenetics/genetics, genomics and MRD rely on collection, storage and analysis of large amounts of diagnostic material, and are usually available at later time-points during therapy, however before taking a decision for allogeneic stem cell transplantation (SCT). All this requires a dedicated laboratory, and is best performed within a prospective, well coordinated clinical trial.

References

    1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–951.
    1. Bennett JM, Catovsky D, Daniel MT, et al. French-American-British (FAB Cooperative Group) Proposals for the classification of the acute leukaemias. Br J Haematol. 1976;33:451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x.
    1. Bennett JM, Catovsky D, Daniel MT, et al. The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations. Br J Haematol. 1981;47:553–561. doi: 10.1111/j.1365-2141.1981.tb02684.x.
    1. Jaffe ES, Harris NL, Stein H, et al. Introduction an overview of the classification of the lymphoid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO Classification of tumours of haematopoietic and lymphoid tissue. IARC; Lyon: 2008. pp. 158–166.
    1. Lai R, Hirsch-Ginsberg CF, Bueso-Ramos C. Pathologic diagnosis of acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2000;14:1209–1235. doi: 10.1016/S0889-8588(05)70183-0.
    1. d’Onofrio G, Zini G, Bain BJ, translators. Morphology of Blood Disorders. 2nd Edition. Wiley-Blackwell; 2014.
    1. Sevilla DW, Colovai AI, Emmons FN, et al. Hematogones: a review and update. Leuk Lymphoma. 2010;51:10–19. doi: 10.3109/10428190903370346.
    1. Stein P, Peiper S, Butler D, et al. Granular acute lymphoblastic leukemia. Am J Clin Pathol. 1983;80:545.
    1. Gassmann W, Löffler H, Thiel E, et al. Morphological and cytochemical findings in 150 cases of T-lineage acute lymphoblastic leukaemia in adults. German Multicentre ALL Study Group (GMALL) Br J Haematol. 1997;97:372–382. doi: 10.1046/j.1365-2141.1997.d01-2171.x.
    1. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL) Leukemia. 1995;9:1783–1786.
    1. Béné MC, Nebe T, Bettelheim P, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia. 2011;25:567–574. doi: 10.1038/leu.2010.312.
    1. Kalina T, Flores-Montero J, van der Velden VH, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. doi: 10.1038/leu.2012.122.
    1. van Dongen JJ, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–1975. doi: 10.1038/leu.2012.120.
    1. Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351:550–554. doi: 10.1016/S0140-6736(97)10295-1.
    1. Janossy G, Coustan-Smith E, Campana D. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases. Leukemia. 1989;3:170–181.
    1. Lenormand B, Bene MC, Lesesve JF, et al. PreB1 (CD10−) acute lymphoblastic leukemia: immunophenotypic and genomic characteristics, clinical features and outcome in 38 adults and 26 children. The Groupe dEtude Immunologique des Leucemies. Leuk Lymphoma. 1998;28:329–342.
    1. Geijtenbeek TB, van Kooyk Y, van Vliet SJ, et al. High frequency of adhesion defects in B-lineage acute lymphoblastic leukemia. Blood. 1999;94:754–764.
    1. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–156. doi: 10.1016/S1470-2045(08)70314-0.
    1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–951. doi: 10.1182/blood-2009-03-209262.
    1. Matutes E, Pickl WF, Van’t Veer M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117:3163–171. doi: 10.1182/blood-2010-10-314682.
    1. Paietta E, Neuberg D, Richards S, et al. Rare adult acute lymphocytic leukemia with CD56 expression in the ECOG experience shows unexpected phenotypic and genotypic heterogeneity. Am J Hematol. 2001;66:189–196. doi: 10.1002/1096-8652(200103)66:3<189::AID-AJH1043>;2-A.
    1. Kantarjian HM, Hirsch-Ginsberg C, Yee G, et al. Mixed-lineage leukemia revisited: acute lymphocytic leukemia with myeloperoxidase-positive blasts by electron microscopy. Blood. 1990;76:808–813.
    1. Hans CP, Finn WG, Singleton TP, et al. Usefulness of anti-CD117 in the flow cytometric analysis of acute leukemia. Am J Clin Pathol. 2002;117:301–305. doi: 10.1309/RWCG-E5T9-GU95-LEWE.
    1. Faber J, Kantarjian H, Roberts MW, Keating, et al. Terminal deoxynucleotidyl transferase-negative acute lymphoblastic leukemia. Arch Pathol Lab Med. 2000;124:92–97.
    1. Zhou Y, Fan X, Routbort M, et al. Absence of terminal deoxynucleotidyl transferase expression identifies a subset of high-risk adult T-lymphoblastic leukemia/lymphoma. Mod Pathol. 2013;26:1338–1345. doi: 10.1038/modpathol.2013.78.
    1. Pui CH, Crist WM, Look AT. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood. 1990;76:1449–1463.
    1. Secker-Walker LM, Prentice HG, et al. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol. 1997;96:601–610. doi: 10.1046/j.1365-2141.1997.d01-2053.x.
    1. Group Français de Cytogénétique Hématologique. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Français de Cytogénétique Hématologique. Blood. 1996;88:3135–314.
    1. Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93:3983–3993.
    1. Kolomietz E, Al-Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood. 2001;97:3581–3588. doi: 10.1182/blood.V97.11.3581.
    1. Moorman AV, Harrison CJ, Buck GA, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109:3189–3197. doi: 10.1182/blood-2006-10-051912.
    1. Pullarkat V, Slovak ML, Kopecky KJ, Forman SJ, Appelbaum FR. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111:2563–2572. doi: 10.1182/blood-2007-10-116186.
    1. Nahi H, Hagglund H, Ahlgren T, et al. An investigation into whether deletions in 9p reflect prognosis in adult precursor B-cell acute lymphoblastic leukemia: a multi-center study of 381 patients. Haematologica. 2008;93:1734–1738. doi: 10.3324/haematol.13227.
    1. Charrin C, Thomas X, Ffrench M, et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL) Blood. 2004;104:2444–2451. doi: 10.1182/blood-2003-04-1299.
    1. Felice MS, Gallego MS, Alonso CN, et al. Prognostic impact of t(1;19)/TCF3-PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin-Frankfurt-Münster-based protocols. Leuk Lymphoma. 2011;52:1215–1221. doi: 10.3109/10428194.2011.565436.
    1. Burmeister T, Gökbuget N, Schwartz S, Fischer L, Hubert D, Sindram A, Hoelzer D, Thiel E. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010;95:241–246. doi: 10.3324/haematol.2009.011346.
    1. Harrison CJ, Moorman AV, Schwab C, et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia. 2014;28:1015–1021. doi: 10.1038/leu.2013.317.
    1. Moorman AV, Schwab C, Ensor HM, et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3100–3108. doi: 10.1200/JCO.2011.40.3907.
    1. Schardt C, Ottmann OG, Hoelzer D, Ganser A. Acute lymphoblastic leukemia with the (4;11) translocation: combined cytogenetic, immunological and molecular genetic analyses. Leukemia. 1992;6:370–374.
    1. Faderl S, Albitar M. Insights into the biologic and molecular abnormalities in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2000;14:1267–1288. doi: 10.1016/S0889-8588(05)70186-6.
    1. Westbrook CA, Hooberman AL, Spino C, et al. Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a Cancer and Leukemia Group B Study (8762) Blood. 1992;80:2983–2990.
    1. Gleissner B, Gökbuget N, Bartram CR, et al. German Multicenter Trials of Adult Acute Lymphoblastic Leukemia Study Group. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99:1536–1543. doi: 10.1182/blood.V99.5.1536.
    1. Chiaretti S, Vitale A, Cazzaniga G, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013;98:1702–1710. doi: 10.3324/haematol.2012.080432.
    1. Rieder H, Ludwig WD, Gassmann W, et al. Prognostic significance of additional chromosome abnormalities in adult patients with Philadelphia chromosome positive acute lymphoblastic leukaemia. Br J Haematol. 1996;95:678–691. doi: 10.1046/j.1365-2141.1996.d01-1968.x.
    1. Ravandi F, Jorgensen JL, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013 Aug 15;122:1214–1221. doi: 10.1182/blood-2012-11-466482.
    1. Marks DI, Moorman AV, Chilton L, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21;q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98:945–952. doi: 10.3324/haematol.2012.081877.
    1. Schneider NR, Carroll AJ, Shuster JJ, et al. New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood. 2000;96:2543–2549.
    1. Lange BJ, Raimondi SC, Heerema N, et al. Pediatric leukemia/lymphoma with t(8;14)(q24;q11) Leukemia. 1992;6:613–618.
    1. Parolini M, Mecucci C, Matteucci C, et al. Highly aggressive T- cell acute lymphoblastic leukemia with t(8;14)(q24;q11): extensive genetic characterization and achievement of early molecular remission and long-term survival in an adult patient. Blood Cancer J. 2014 Jan 17;4:e176. doi: 10.1038/bcj.2013.72.
    1. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCRABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:5202–5207. doi: 10.1200/JCO.2008.21.6408.
    1. Mullighan CG, Su X, Zhang J, et al. Children’s Oncology Group: Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–480. doi: 10.1056/NEJMoa0808253.
    1. van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123:1691–8. doi: 10.1182/blood-2013-06-509794.
    1. Kuiper RP, Waanders E, van der Velden VH, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor BALL. Leukemia. 2010;24:1258–1264. doi: 10.1038/leu.2010.87.
    1. Moorman AV, Schwab C, Ensor HM, et al. IGH@ translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3100–3108. doi: 10.1200/JCO.2011.40.3907.
    1. van der Veer A, Waanders E, Pieters R, et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood. 2013;122:2622–2629. doi: 10.1182/blood-2012-10-462358.
    1. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41:1243–1246. doi: 10.1038/ng.469.
    1. Yoda A, Yoda Y, Chiaretti S, et al. Yoda A, Yoda Y, Chiaretti S, et al: Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2010;107:252–257. doi: 10.1073/pnas.0911726107.
    1. Hertzberg L, Vendramini E, Ganmore I, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood. 2010;115:1006–1117. doi: 10.1182/blood-2009-08-235408.
    1. Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106:1189–1198. doi: 10.1182/blood-2004-12-4938.
    1. Chiaretti S, Li X, Gentleman R, et al. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res. 2005;11:7209–7219. doi: 10.1158/1078-0432.CCR-04-2165.
    1. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–134. doi: 10.1016/S1470-2045(08)70339-5.
    1. Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116:4874–4884. doi: 10.1182/blood-2009-08-239681.
    1. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–166. doi: 10.1016/j.ccr.2012.06.005.
    1. Maude SL, Tasian SK, Vincent T, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–3518. doi: 10.1182/blood-2012-03-415448.
    1. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–1015.
    1. Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–252. doi: 10.1038/ng.2532.
    1. Mühlbacher V, Zenger M, Schnittger S, et al. Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93% Genes Chromosomes Cancer. 2014;53:524–536. doi: 10.1002/gcc.22163.
    1. Hof J, Krentz S, van Schewick, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29:3185–93. doi: 10.1200/JCO.2011.34.8144.
    1. Krentz S, Hof J, Mendioroz A, et al. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. 2013;27:295–304. doi: 10.1038/leu.2012.155.
    1. Chiaretti S, Brugnoletti F, Tavolaro S, et al. TP53 mutations are frequent in adult acute lymphoblastic leukemia cases negative for recurrent fusion genes and correlate with poor response to induction therapy. Haematologica. 2013;98:e59–61. doi: 10.3324/haematol.2012.076786.
    1. Stengel A, Schnittger S, Weissmann S, et al. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy and a poor prognosis. Blood. 2014;124:251–258. doi: 10.1182/blood-2014-02-558833.
    1. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–239. doi: 10.1038/nature09727.
    1. Inthal A, Zeitlhofer P, Zeginigg M, et al. CREBB HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012;26:1797–1803. doi: 10.1038/leu.2012.60.
    1. Meyer JA, Wang J, Hogan LE, et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet. 2013;45:290–294. doi: 10.1038/ng.2558.
    1. Barber KE, Martineau M, Harewood L, et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia. 2004;18:1153–1156. doi: 10.1038/sj.leu.2403357.
    1. Ferrando AA, Neuberg DS, Dodge RK, et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet. 2004;363:535–536. doi: 10.1016/S0140-6736(04)15542-6.
    1. Ballerini P, Busson M, Fasola S, et al. NUP214-ABL1 amplification in t(5;14)/HOX11L2-positive ALL present with several forms and may have a prognostic significance. Leukemia. 2005;19:468–470. doi: 10.1038/sj.leu.2403654.
    1. Asnafi V, Buzyn A, Thomas X, et al. Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. Blood. 2005;105:3072–3078. doi: 10.1182/blood-2004-09-3666.
    1. Burmeister T, Gokbuget N, Reinhardt R, Rieder H, Hoelzer D, Schwartz S. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Blood. 2006;108:3556–3559. doi: 10.1182/blood-2006-04-014514.
    1. Baldus CD, Burmeister T, Martus P, et al. High expression of the ETS transcription factor ERG predicts adverse outcome in acute T-lymphoblastic leukemia in adults. J Clin Oncol. 2006;24:4714–4720. doi: 10.1200/JCO.2006.06.1580.
    1. Baldus CD, Martus P, Burmeister T, et al. Low ERG and BAALC expression identifies a new subgroup of adult acute T-lymphoblastic leukemia with a highly favorable outcome. J Clin Oncol. 2007;25:3739–3745. doi: 10.1200/JCO.2007.11.5253.
    1. Bergeron J, Clappier E, Radford I, et al. Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood. 2007;110:2324–2330. doi: 10.1182/blood-2007-04-079988.
    1. Asnafi V, Buzyn A, Le Noir S, et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favourable outcome in adult T-cell acute lymphoblastic leukemia (TALL): a GRAALL study. Blood. 2009;113:3918–3924. doi: 10.1182/blood-2008-10-184069.
    1. Chiaretti S, Messina M, Tavolaro S, et al. Gene expression profiling identifies a subset of adult T-cell acute lymphoblastic leukemia with myeloid-like gene features and over-expression of miR-223. Haematologica. 2010;95:1114–1121. doi: 10.3324/haematol.2009.015099.
    1. Coskun E, Neumann M, Schlee C, et al. MicroRNA profiling reveals aberrant microRNA expression in adult ETP-ALL and functional studies implicate a role for miR-222 in acute leukemia. Leuk Res. 2013;37:647–56. doi: 10.1016/j.leukres.2013.02.019.
    1. Zhang J, Ding L, Holmfeldt L, Wu G, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–163. doi: 10.1038/nature10725.
    1. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208:2571–2579. doi: 10.1084/jem.20112239.
    1. Park MJ, Tak T, Oda M, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145:198–206. doi: 10.1111/j.1365-2141.2009.07607.x.
    1. Mansour MR, Sulis ML, Duke V, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol. 2009;27:4352–4356. doi: 10.1200/JCO.2009.22.0996.
    1. Ben Abdelali R, Asnafi V, Leguay T, et al. Group for Research on Adult Acute Lymphoblastic Leukemia. Pediatric-inspired intensified therapy of adult T-ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood. 2011;118:5099–5107. doi: 10.1182/blood-2011-02-334219.
    1. Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 2013;31:4333–4342. doi: 10.1200/JCO.2012.48.5292.
    1. Flex E, Petrangeli V, Stella L, et al. Somatically acquired Jak1 mutation in adult acute lymphoblastic leukemia. J Exp Med. 2008;205:751–758. doi: 10.1084/jem.20072182.
    1. Jeong EG, Kim MS, Nam HK, et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res. 2008;14:3716–3721. doi: 10.1158/1078-0432.CCR-07-4839.
    1. Asnafi V, Le Noir S, Lhermitte L, et al. JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study. Br J Haematol. 2010;148:178–179. doi: 10.1111/j.1365-2141.2009.07912.x.
    1. Gutierrez A, Kentsis A, Sanda T, et al. The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood. 2011;118:4169–4173. doi: 10.1182/blood-2010-11-318873.
    1. Kraszewska MD, Dawidowska M, Szczepanski T, et al. T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol. 2012;156:303–315. doi: 10.1111/j.1365-2141.2011.08957.x.
    1. Kleppe M, Lahortiga I, El Chaar T, et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Gen. 2010;42:530–535. doi: 10.1038/ng.587.
    1. Kleppe M, Soulier J, Asnafi V, et al. PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood. 2011;117:7090–7098. doi: 10.1182/blood-2010-10-314286.
    1. Shochat C, Tal N, Bandapalli OR, et al. Gain-of-function mutations in interleukin-7 receptor-a (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208:901–908. doi: 10.1084/jem.20110580.
    1. Zenatti PP, Ribeiro D, Li W, et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011;43:932–939. doi: 10.1038/ng.924.
    1. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42:338–342. doi: 10.1038/ng.542.
    1. Wang Q, Qiu H, Jiang H, et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica. 2011;96:1808–1814. doi: 10.3324/haematol.2011.043083.
    1. Porcu M, Kleppe M, Gianfelici V, et al. Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T-cell acute lymphoblastic leukemia. Blood. 2012;119:4476–4479. doi: 10.1182/blood-2011-09-379958.
    1. De Keersmaecker K, Atak ZK, Li N, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013;45:186–190. doi: 10.1038/ng.2508.
    1. Tzoneva G, Perez-Garcia A, Carpenter Z, et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med. 2013;19:368–371. doi: 10.1038/nm.3078.

Source: PubMed

3
Abonnieren