Alveolar ridge preservation with autologous particulated dentin-a case series

Silvio Valdec, Pavla Pasic, Alex Soltermann, Daniel Thoma, Bernd Stadlinger, Martin Rücker, Silvio Valdec, Pavla Pasic, Alex Soltermann, Daniel Thoma, Bernd Stadlinger, Martin Rücker

Abstract

Introduction: Ridge preservation can be performed with autologous bone, alloplastic bone substitute material or a combination of both. Dentin is similar to bone in its chemical composition. In its use as bone substitute material, it undergoes a remodelling process and transforms to bone. The presented case report introduces a technique in which the extraction socket is augmented with autologous, particulated dentin.

Material and methods: The fractured, non-savable mesial incisor of the upper jaw was carefully extracted in axial direction. After the extraction, the tooth was cleared from remaining periodontal tissue. The vital pulp tissue or a root canal filling, enamel and cementum were also removed. Following the particulation of the remaining dentin in a bone mill, the dentin particles were immediately filled orthotope into the alveolar socket. The soft tissue closure was performed with a free gingival graft of the palate.

Results: After an observation period of 4 months, an implant was placed in the augmented area, which osseointegrated successfully and could be restored prosthodontically in the following. The results of this method showed a functional and aesthetic success.

Conclusion: The pre-implantological, autologous ridge preservation with dentin could be performed successfully. For the establishment of dentin as augmentation material for jaw augmentation procedures, a prospective, clinical trial is now necessary.

Keywords: Alveolar ridge preservation; Autologous augmentation; Bone augmentation; Bone substitute; Particulated dentin.

Figures

Fig. 1
Fig. 1
Extraction with the benex system
Fig. 2
Fig. 2
The remaining root of tooth 11
Fig. 3
Fig. 3
Removal of the pulp
Fig. 4
Fig. 4
Removal of enamel and the cementum
Fig. 5
Fig. 5
Autologous dentin in a bone mill
Fig. 6
Fig. 6
Autologous dentin with the desired particle size
Fig. 7
Fig. 7
Autologous, particulated dentin mixed with blood from the operating site
Fig. 8
Fig. 8
Autologous, particulated dentin in the alveolar socket
Fig. 9
Fig. 9
Soft tissue punch
Fig. 10
Fig. 10
Soft tissue graft placed on the recipient site
Fig. 11
Fig. 11
Sagittal view
Fig. 12
Fig. 12
Axial view
Fig. 13
Fig. 13
a, b Clinical situation prior to implant placement
Fig. 14
Fig. 14
Single tooth X-ray immediately after the augmentation using autogenous dentin
Fig. 15
Fig. 15
Single tooth X-ray, showing a constant bone level 7 months after implant placement
Fig. 16
Fig. 16
Single tooth X-ray, 1 year post-implantation, showing the finalized crown
Fig. 17
Fig. 17
Histology of dentin augmentation. aAsterisk denotes incorporated dentin particle, surrounded by vital woven bone. Triangle shows reactive process in the bone marrow lacunae with osteoblast rimming. No signs of necrosis or infection (H&E stain, ×100 magnification). b Larger magnification at ×200. c EvG (Elastica van Gieson) stain, ×200
Fig. 18
Fig. 18
Finalized prosthetic restoration after 1 year
Fig. 19
Fig. 19
Colour-coded superimposition of intraoral scans before extraction and after definitive prosthetic restoration
Fig. 20
Fig. 20
Colour-coded superimposition of intraoral scans before extraction and after definitive prosthetic restoration

References

    1. Al-Asfour A, Andersson L, Kamal M, Joseph B. New bone formation around xenogenic dentin grafts to rabbit tibia marrow. Dent Traumatol. 2013;29(6):455–460. doi: 10.1111/edt.12045.
    1. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11–25.
    1. Andersson L. Dentin xenografts to experimental bone defects in rabbit tibia are ankylosed and undergo osseous replacement. Dent Traumatol. 2010;26(5):398–402. doi: 10.1111/j.1600-9657.2010.00912.x.
    1. Andersson L, Blomlof L, Lindskog S, Feiglin B, Hammarstrom L. Tooth ankylosis. Clinical, radiographic and histological assessments. Int J Oral Surg. 1984;13(5):423–431. doi: 10.1016/S0300-9785(84)80069-1.
    1. Atiya BK, Shanmuhasuntharam P, Huat S, Abdulrazzak S, Oon H. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model. Int J Oral Maxillofac Implants. 2014;29(2):e165–170. doi: 10.11607/jomi.te54.
    1. Avila-Ortiz G, Elangovan S, Kramer KW, Blanchette D, Dawson DV. Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis. J Dent Res. 2014;93(10):950–958. doi: 10.1177/0022034514541127.
    1. Baldini N, De Sanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery. Dent Mater. 2011;27(1):61–70. doi: 10.1016/j.dental.2010.10.017.
    1. Baumer D, Zuhr O, Rebele S, Schneider D, Schupbach P, Hurzeler M. The socket-shield technique: first histological, clinical, and volumetrical observations after separation of the buccal tooth segment - a pilot study. Clin Implant Dent Relat Res. 2015;17(1):71–82. doi: 10.1111/cid.12076.
    1. Bormann KH, Suarez-Cunqueiro MM, Sinikovic B, Kampmann A, von See C, Binger T, Winkler M, Gellrich NC, Tavassol F, Rucker M. Dentin as a suitable bone substitute comparable to ss-TCP—an experimental study in mice. Microvasc Res. 2012;84(2):116–122. doi: 10.1016/j.mvr.2012.06.004.
    1. Camargo PM, Lekovic V, Weinlaender M, Klokkevold PR, Kenney EB, Dimitrijevic B, Nedic M, Jancovic S, Orsini M. Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(5):581–586. doi: 10.1067/moe.2000.110035.
    1. Cardaropoli G, Araujo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol. 2003;30(9):809–818. doi: 10.1034/j.1600-051X.2003.00366.x.
    1. Furhauser R, Florescu D, Benesch T, Haas R, Mailath G, Watzek G. Evaluation of soft tissue around single-tooth implant crowns: the pink esthetic score. Clin Oral Implants Res. 2005;16(6):639–644. doi: 10.1111/j.1600-0501.2005.01193.x.
    1. Guirado JL, Troiano M, Lopez-Lopez PJ, Ramirez-Fernandez MP, de Val JE, Marin JM, Gehrke SA. Different configuration of socket shield technique in peri-implant bone preservation: an experimental study in dog mandible. Ann Anat. 2016. doi:10.1016/j.aanat.2016.06.008.
    1. Hallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res. 2001;3(2):87–96. doi: 10.1111/j.1708-8208.2001.tb00236.x.
    1. Hammerle CH, Araujo MG, Simion M. Evidence-based knowledge on the biology and treatment of extraction sockets. Clin Oral Implants Res. 2012;23(Suppl 5):80–82. doi: 10.1111/j.1600-0501.2011.02370.x.
    1. Hurzeler MB, Zuhr O, Schupbach P, Rebele SF, Emmanouilidis N, Fickl S. The socket-shield technique: a proof-of-principle report. J Clin Periodontol. 2010;37(9):855–862. doi: 10.1111/j.1600-051X.2010.01595.x.
    1. Jung RE, Philipp A, Annen BM, Signorelli L, Thoma DS, Hammerle CH, Attin T, Schmidlin P. Radiographic evaluation of different techniques for ridge preservation after tooth extraction: a randomized controlled clinical trial. J Clin Periodontol. 2013;40(1):90–98. doi: 10.1111/jcpe.12027.
    1. Kotsakis GA, Salama M, Chrepa V, Hinrichs JE, Gaillard P. A randomized, blinded, controlled clinical study of particulate anorganic bovine bone mineral and calcium phosphosilicate putty bone substitutes for socket preservation. Int J Oral Maxillofac Implants. 2014;29(1):141–151. doi: 10.11607/jomi.3230.
    1. Laschke MW, Haufel JM, Thorlacius H, Menger MD. New experimental approach to study host tissue response to surgical mesh materials in vivo. J Biomed Mater Res A. 2005;74(4):696–704. doi: 10.1002/jbm.a.30371.
    1. Lekovic V, Kenney EB, Weinlaender M, Han T, Klokkevold P, Nedic M, Orsini M. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol. 1997;68(6):563–570. doi: 10.1902/jop.1997.68.6.563.
    1. Linde A. Dentin matrix proteins: composition and possible functions in calcification. Anat Rec. 1989;224(2):154–166. doi: 10.1002/ar.1092240206.
    1. Liu X, Li Q, Wang F, Wang Z. Maxillary sinus floor augmentation and dental implant placement using dentin matrix protein-1 gene-modified bone marrow stromal cells mixed with deproteinized boving bone: a comparative study in beagles. Arch Oral Biol. 2016;64:102–108. doi: 10.1016/j.archoralbio.2016.01.004.
    1. Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implants Res. 2016. doi:10.1111/clr.12885.
    1. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. J Clin Periodontol. 2008;35(8 Suppl):216–240. doi: 10.1111/j.1600-051X.2008.01272.x.
    1. Pohl V, Schuh C, Fischer MB, Haas R. A new method using autogenous impacted third molars for sinus augmentation to enhance implant treatment: case series with preliminary results of an open, prospective longitudinal study. Int J Oral Maxillofac Implants. 2016;31(3):622–630. doi: 10.11607/jomi.4172.
    1. Qin X, Raj RM, Liao XF, Shi W, Ma B, Gong SQ, Chen WM, Zhou B. Using rigidly fixed autogenous tooth graft to repair bone defect: an animal model. Dent Traumatol. 2014;30(5):380–384. doi: 10.1111/edt.12101.
    1. Rucker M, Laschke MW, Junker D, Carvalho C, Tavassol F, Mulhaupt R, Gellrich NC, Menger MD. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds. J Biomed Mater Res A. 2008;86(4):1002–1011. doi: 10.1002/jbm.a.31722.
    1. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–323.
    1. Schwarz F, Golubovic V, Becker K, Mihatovic I. Extracted tooth roots used for lateral alveolar ridge augmentation: a proof-of-concept study. J Clin Periodontol. 2016;43(4):345–353. doi: 10.1111/jcpe.12481.
    1. Schwarz F, Golubovic V, Mihatovic I, Becker J. Periodontally diseased tooth roots used for lateral alveolar ridge augmentation. A proof-of-concept study. J Clin Periodontol. 2016;43(9):797–803. doi: 10.1111/jcpe.12579.
    1. Sculean A, Berakdar M, Chiantella GC, Donos N, Arweiler NB, Brecx M. Healing of intrabony defects following treatment with a bovine-derived xenograft and collagen membrane. A controlled clinical study. J Clin Periodontol. 2003;30(1):73–80. doi: 10.1034/j.1600-051X.2003.10192.x.
    1. Sutton DN, Lewis BR, Patel M, Cawood JI. Changes in facial form relative to progressive atrophy of the edentulous jaws. Int J Oral Maxillofac Surg. 2004;33(7):676–682. doi: 10.1016/S0901-5027(03)00132-2.
    1. Takata T, D'Errico JA, Atkins KB, Berry JE, Strayhorn C, Taichman RS, Somerman MJ. Protein extracts of dentin affect proliferation and differentiation of osteoprogenitor cells in vitro. J Periodontol. 1998;69(11):1247–1255. doi: 10.1902/jop.1998.69.11.1247.
    1. Yildirim M, Spiekermann H, Handt S, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants. 2001;16(1):23–33.

Source: PubMed

3
Abonnieren