A pilot study of bevacizumab combined with etoposide and cisplatin in breast cancer patients with leptomeningeal carcinomatosis

Pei-Fang Wu, Ching-Hung Lin, Ching-Hua Kuo, Wei-Wu Chen, Dah-Cherng Yeh, Hsiao-Wei Liao, Shu-Min Huang, Ann-Lii Cheng, Yen-Shen Lu, Pei-Fang Wu, Ching-Hung Lin, Ching-Hua Kuo, Wei-Wu Chen, Dah-Cherng Yeh, Hsiao-Wei Liao, Shu-Min Huang, Ann-Lii Cheng, Yen-Shen Lu

Abstract

Background: Elevated vascular endothelial growth factor (VEGF) was associated with poor prognosis in leptomeningeal carcinomatosis and anti-angiogenic therapy was found to prolong the survival of mice in preclinical studies. This prospective pilot study investigated the efficacy of anti-VEGF therapy plus chemotherapy in patients with leptomeningeal carcinomatosis originating from breast cancer.

Methods: Eligible patients were scheduled to receive bevacizumab combined with etoposide and cisplatin (BEEP) every 3 weeks for a maximum of 6 cycles or until unacceptable toxicity. The primary objective was the central nervous system (CNS)-specific response rate, which was defined as disappearance of cancer cells in the cerebrospinal fluid (CSF) and an improved or stabilized neurologic status. The impact of VEGF inhibition on etoposide penetration into the CSF was analyzed.

Results: Eight patients were enrolled. The CNS-specific response rate was 60% in 5 evaluable patients. According to intent-to-treat analysis, the median overall survival of the eight patients was 4.7 months (95% confidence interval, CI, 0.3-9.0) and the neurologic progression-free survival was 4.7 months (95% CI 0-10.5). The most common grade 3/4 adverse events were neutropenia (23.1%), leukopenia (23.1%), and hyponatremia (23.1%). The etoposide concentrations in the CSF were much lower than those in plasma, and bevacizumab did not increase etoposide delivery to the CSF.

Conclusions: BEEP exhibited promising efficacy in breast cancer patients with leptomeningeal carcinomatosis. Additional studies are warranted to verify its efficacy and clarify the role of anti-angiogenic therapy in this disease.

Trial registration: ClinicalTrials.gov identifying number NCT01281696 .

Figures

Figure 1
Figure 1
Efficacy results: Overall Survival (OS) and neurologic progression free survival (PFS).
Figure 2
Figure 2
The effects of bevacizumab administration on the temporal changes of CSF to plasma ratio of etoposide concentration. (A) Individual CSF/ Plasma ratio of etoposide concentration versus time plot. (B) Overall CSF/Plasma ratio of etoposide concentration versus time plot.

References

    1. Beauchesne P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010;11(9):871–9. doi: 10.1016/S1470-2045(10)70034-6.
    1. Lombardi G, Zustovich F, Farina P, Della Puppa A, Manara R, Cecchin D, et al. Neoplastic meningitis from solid tumors: new diagnostic and therapeutic approaches. Oncologist. 2011;16(8):1175–88. doi: 10.1634/theoncologist.2011-0101.
    1. Herrlinger U, Wiendl H, Renninger M, Forschler H, Dichgans J, Weller M. Vascular endothelial growth factor (VEGF) in leptomeningeal metastasis: diagnostic and prognostic value. Br J Cancer. 2004;91(2):219–24.
    1. Reijneveld JC, Brandsma D, Boogerd W, Bonfrer JG, Kalmijn S, Voest EE, et al. CSF levels of angiogenesis-related proteins in patients with leptomeningeal metastases. Neurology. 2005;65(7):1120–2. doi: 10.1212/01.wnl.0000178981.39984.c2.
    1. Groves MD, Hess KR, Puduvalli VK, Colman H, Conrad CA, Gilbert MR, et al. Biomarkers of disease: cerebrospinal fluid vascular endothelial growth factor (VEGF) and stromal cell derived factor (SDF)-1 levels in patients with neoplastic meningitis (NM) due to breast cancer, lung cancer and melanoma. J Neurooncol. 2009;94(2):229–34. doi: 10.1007/s11060-009-9819-2.
    1. Reijneveld JC, Taphoorn MJ, Kerckhaert OA, Drixler TA, Boogerd W, Voest EE. Angiostatin prolongs the survival of mice with leptomeningeal metastases. Eur J Clin Invest. 2003;33(1):76–81. doi: 10.1046/j.1365-2362.2003.01056.x.
    1. Lu YS, Chen TW, Lin CH, Yeh DC, Tseng LM, Wu PF, et al. Bevacizumab Preconditioning Followed by Etoposide and Cisplatin Is Highly Effective in Treating Brain Metastases of Breast Cancer Progressing from Whole-Brain Radiotherapy. Clin Cancer Res. 2015; 21(8):1851–8. doi: 10.1158/1078-0432.CCR-14-2075. Epub 2015 Feb 19.
    1. Liao HW LY, Lin CH, Kuo CH. International Mass Spectrometry Conference 2012. 2012. A rapid and sensitive liquid chromatography tandem mass spectrometry method for quantification of etoposide and etoposide chatechol in cerebrospinal fluid (PMo-003)
    1. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res. 2009;15(4):1452–9. doi: 10.1158/1078-0432.CCR-08-1080.
    1. Groves MD, Glantz MJ, Chamberlain MC, Baumgartner KE, Conrad CA, Hsu S, et al. A multicenter phase II trial of intrathecal topotecan in patients with meningeal malignancies. Neuro Oncol. 2008;10(2):208–15. doi: 10.1215/15228517-2007-059.
    1. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res. 1999;5(11):3394–402.
    1. Shigekawa T, Takeuchi H, Misumi M, Matsuura K, Sano H, Fujiuchi N, et al. Successful treatment of leptomeningeal metastases from breast cancer using the combination of trastuzumab and capecitabine: a case report. Breast Cancer. 2009;16(1):88–92. doi: 10.1007/s12282-008-0056-x.
    1. Ekenel M, Hormigo AM, Peak S, Deangelis LM, Abrey LE. Capecitabine therapy of central nervous system metastases from breast cancer. J Neurooncol. 2007;85(2):223–7. doi: 10.1007/s11060-007-9409-0.
    1. Tham YL, Hinckley L, Teh BS, Elledge R. Long-term clinical response in leptomeningeal metastases from breast cancer treated with capecitabine monotherapy: a case report. Clin Breast Cancer. 2006;7(2):164–6. doi: 10.3816/CBC.2006.n.028.
    1. Paydas S, Bicakci K, Yavuz S. Dramatic response with capecitabine after cranial radiation to the brain parenchymal and leptomeningeal metastases from lung cancer. Eur J Intern Med. 2009;20(1):96–9. doi: 10.1016/j.ejim.2008.04.015.
    1. Ku GY, Krol G, Ilson DH. Successful treatment of leptomeningeal disease in colorectal cancer with a regimen of bevacizumab, temozolomide, and irinotecan. J Clin Oncol. 2007;25(13):e14–6. doi: 10.1200/JCO.2006.10.3317.
    1. Onishi H, Morisaki T, Nakafusa Y, Nakashima Y, Yokohata K, Katano M. Objective response with lapatinib in patients with meningitis carcinomatosa derived from HER2/HER1-negative breast cancer. Int J Clin Oncol. 2011;16(6):718–21. doi: 10.1007/s10147-011-0195-5.
    1. Rivera E, Meyers C, Groves M, Valero V, Francis D, Arun B, et al. Phase I study of capecitabine in combination with temozolomide in the treatment of patients with brain metastases from breast carcinoma. Cancer. 2006;107(6):1348–54. doi: 10.1002/cncr.22127.
    1. Tetef ML, Margolin KA, Doroshow JH, Akman S, Leong LA, Morgan RJ, Jr, et al. Pharmacokinetics and toxicity of high-dose intravenous methotrexate in the treatment of leptomeningeal carcinomatosis. Cancer Chemother Pharmacol. 2000;46(1):19–26. doi: 10.1007/s002800000118.
    1. Kiewe P, Thiel E, Reinwald M, Korfel A. Topotecan and ifosfamide systemic chemotherapy for CNS involvement of solid tumors. J Neurooncol. 2011;103(3):629–34. doi: 10.1007/s11060-010-0434-z.
    1. Peereboom DM, Murphy C, Ahluwalia MS, Conlin A, Eichler A, Van Poznak C, et al. Phase II trial of patupilone in patients with brain metastases from breast cancer. Neuro Oncol. 2014;16(4):579–83. doi: 10.1093/neuonc/not305.
    1. Segura PP, Gil M, Balana C, Chacon I, Langa JM, Martin M, et al. Phase II trial of temozolomide for leptomeningeal metastases in patients with solid tumors. J Neurooncol. 2012;109(1):137–42. doi: 10.1007/s11060-012-0879-3.
    1. Groves MD, DeGroot J, Tremont I, Forman A, Kang S, Pei BL, et al. A pilot study of systemically administered bevacizumab in patients with neoplastic meningitis: imaging, clinical, CSF, and biomarker outcomes. Neuro Oncol (2011) 2011;13(suppl 3):iii85–91.
    1. Fizazi K, Asselain B, Vincent-Salomon A, Jouve M, Dieras V, Palangie T, et al. Meningeal carcinomatosis in patients with breast carcinoma. Clinical features, prognostic factors, and results of a high-dose intrathecal methotrexate regimen. Cancer. 1996;77(7):1315–23. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1315::AID-CNCR14>;2-4.
    1. Rudnicka H, Niwinska A, Murawska M. Breast cancer leptomeningeal metastasis–the role of multimodality treatment. J Neurooncol. 2007;84(1):57–62. doi: 10.1007/s11060-007-9340-4.
    1. Grossman SA, Finkelstein DM, Ruckdeschel JC, Trump DL, Moynihan T, Ettinger DS. Randomized prospective comparison of intraventricular methotrexate and thiotepa in patients with previously untreated neoplastic meningitis. Eastern Cooperative Oncology Group. J Clin Oncol. 1993;11(3):561–9.
    1. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95. doi: 10.1016/j.ccr.2006.11.021.
    1. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62. doi: 10.1126/science.1104819.
    1. Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S, et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 2007;13(13):3942–50. doi: 10.1158/1078-0432.CCR-07-0278.
    1. Van der Veldt AA, Lubberink M, Bahce I, Walraven M, de Boer MP, Greuter HN, et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21(1):82–91. doi: 10.1016/j.ccr.2011.11.023.
    1. Lu YS CB, Lin CH, Chen WW, Wu PF, Cheng AL, Shih Tiffany TF. Normalization of tumor vasculature by anti-angiogenesis therapy in metastatic tumor: A clinical study to determine the timing and effect. Proceedings: AACR Annual Meeting 2014. Cancer Res. 2014;74:abstract 2984. doi: 10.1158/1538-7445.AM2014-2984.

Source: PubMed

3
Abonnieren