Opioid antagonism modulates wanting-related frontostriatal connectivity

Alexander Soutschek, Susanna C Weber, Thorsten Kahnt, Boris B Quednow, Philippe N Tobler, Alexander Soutschek, Susanna C Weber, Thorsten Kahnt, Boris B Quednow, Philippe N Tobler

Abstract

Theoretical accounts distinguish between motivational ('wanting') and hedonic ('liking') dimensions of rewards. Previous animal and human research linked wanting and liking to anatomically and neurochemically distinct brain mechanisms, but it remains unknown how the different brain regions and neurotransmitter systems interact in processing distinct reward dimensions. Here, we assessed how pharmacological manipulations of opioid and dopamine receptor activation modulate the neural processing of wanting and liking in humans in a randomized, placebo-controlled, double-blind clinical trial. Reducing opioid receptor activation with naltrexone selectively reduced wanting of rewards, which on a neural level was reflected by stronger coupling between dorsolateral prefrontal cortex and the striatum under naltrexone compared with placebo. In contrast, reducing dopaminergic neurotransmission with amisulpride revealed no robust effects on behavior or neural activity. Our findings thus provide insights into how opioid receptors mediate neural connectivity related to specifically motivational, not hedonic, aspects of rewards.

Trial registration: ClinicalTrials.gov NCT02557984.

Keywords: dopamine; human; liking; neuroscience; opioid; reward; striatum; wanting.

Conflict of interest statement

AS, SW, BQ, PT No competing interests declared, TK Reviewing editor, eLife

© 2021, Soutschek et al.

Figures

Figure 1.. Task procedure and behavioral results.
Figure 1.. Task procedure and behavioral results.
(A) Participants rated in the MRI scanner how much they wanted or liked objects before (pre-test) or after (post-test) they won or lost these items in a game between the scanning sessions. (B) On each trial, a cue indicated whether a wanting or liking rating was required, followed by the presentation of the current object (here: a pick-up sticks game). Participants had to rate how much they wanted or liked the presented object within 3.5 s, then the next trial started after a variable inter-trial interval (mean = 3 s). (C) Liking ratings were significantly reduced for objects that were lost relative to won in the gamble, while wanting ratings did not significantly differ between lost versus won items. (D) The opioid antagonist naltrexone significantly reduced wanting ratings relative to placebo, while liking ratings were unaffected by naltrexone or the dopamine antagonist amisulpride. For illustration purposes, participant-specific mean wanting/liking ratings are plotted on a scale from 0 to 10, while the statistical analyses are conducted on the participant- and item-specific wanting and liking ratings. Error bars indicate standard error of the mean, black dots represent individual data points. *p < 0.05, ***p < 0.001.
Figure 2.. Neural correlates of ( A…
Figure 2.. Neural correlates of (A) wanting and (B) liking independently of behavioral relevance.
Wanting correlated with activation in dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), and posterior cingulate cortex (PCC) (whole-brain FWE-corrected). Liking correlated with activation in dorsal PCC (whole-brain FWE-corrected) and orbitofrontal cortex (small-volume FWE-corrected). (C) Wanting ratings significantly correlated with activation in the striatum during wanting judgements (small-volume FWE-corrected). Images are thresholded at p < 0.001 uncorrected.
Figure 3.. Effects of Judgement type and…
Figure 3.. Effects of Judgement type and drug on parametric striatal connectivity.
(A) On wanting trials (collapsed across drug groups), dorsolateral prefrontal cortex (DLPFC)-striatum connectivity was enhanced for wanting relative to liking aspects of rewards (image thresholded at p < 0.001 uncorrected). (B) Wanting-related DLPFC-striatum coupling was significantly stronger under naltrexone compared with placebo (image thresholded at p < 0.001 uncorrected). (C, D) Extracted parameter estimates for DLPFC (as defined by the significant cluster in general linear model 1 [GLM-1]), separately for wanting and liking judgements. (C) If wanting judgements were behaviorally relevant, naltrexone increased wanting relative to liking-related DLPFC-striatum connectivity. (D) No significant drug effects on DLPFC-striatum connectivity were observed on liking trials. Error bars indicate standard error of the mean, black dots represent individual data points. *p < 0.05.

References

    1. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage. 2013;76:412–427. doi: 10.1016/j.neuroimage.2013.02.063.
    1. Berridge KC, Valenstein ES. What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behavioral Neuroscience. 1991;105:3–14. doi: 10.1037//0735-7044.105.1.3.
    1. Berridge KC. Food reward: brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews. 1996;20:1–25. doi: 10.1016/0149-7634(95)00033-b.
    1. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: “liking”, “wanting”, and learning. Current Opinion in Pharmacology. 2009;9:65–73. doi: 10.1016/j.coph.2008.12.014.
    1. Berridge KC. From prediction error to incentive salience: mesolimbic computation of reward motivation. The European Journal of Neuroscience. 2012;35:1124–1143. doi: 10.1111/j.1460-9568.2012.07990.x.
    1. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86:646–664. doi: 10.1016/j.neuron.2015.02.018.
    1. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. The American Psychologist. 2016;71:670–679. doi: 10.1037/amp0000059.
    1. Buchel C, Miedl S, Sprenger C. Hedonic processing in humans is mediated by an opioidergic mechanism in a mesocorticolimbic system. eLife. 2018;7:e39648. doi: 10.7554/eLife.39648.
    1. Burke CJ, Soutschek A, Weber S, Raja Beharelle A, Fehr E, Haker H, Tobler PN. Dopamine Receptor-Specific Contributions to the Computation of Value. Neuropsychopharmacology. 2018;43:1415–1424. doi: 10.1038/npp.2017.302.
    1. Case LK, Čeko M, Gracely JL, Richards EA, Olausson H, Bushnell MC. Touch Perception Altered by Chronic Pain and by Opioid Blockade. ENeuro. 2016;3:ENEURO.0138-15.2016. doi: 10.1523/ENEURO.0138-15.2016.
    1. Cawley EI, Park S, aan het Rot M, Sancton K, Benkelfat C, Young SN, Boivin DB, Leyton M. Dopamine and light: dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. Journal of Psychiatry & Neuroscience. 2013;38:388–397. doi: 10.1503/jpn.120181.
    1. Chelnokova O, Laeng B, Eikemo M, Riegels J, Løseth G, Maurud H, Willoch F, Leknes S. Rewards of beauty: the opioid system mediates social motivation in humans. Molecular Psychiatry. 2014;19:746–747. doi: 10.1038/mp.2014.1.
    1. Chong TT-J, Bonnelle V, Manohar S, Veromann K-R, Muhammed K, Tofaris GK, Hu M, Husain M. Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. 2015;69:40–46. doi: 10.1016/j.cortex.2015.04.003.
    1. Cools R. Dopaminergic control of the striatum for high-level cognition. Current Opinion in Neurobiology. 2011;21:402–407. doi: 10.1016/j.conb.2011.04.002.
    1. Courtney KE, Ghahremani DG, Ray LA. The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans. Neuropsychopharmacology. 2016;41:2872–2881. doi: 10.1038/npp.2016.99.
    1. de Laat B, Goldberg A, Shi J, Tetrault JM, Nabulsi N, Zheng M-Q, Najafzadeh S, Gao H, Kapinos M, Ropchan J, O’Malley SS, Huang Y, Morris ED, Krishnan-Sarin S. The Kappa Opioid Receptor Is Associated With Naltrexone-Induced Reduction of Drinking and Craving. Biological Psychiatry. 2019;86:864–871. doi: 10.1016/j.biopsych.2019.05.021.
    1. Delay-Goyet P, Zajac JM, Javoy-Agid F, Agid Y, Roques BP. Regional distribution of mu, delta and kappa opioid receptors in human brains from controls and parkinsonian subjects. Brain Research. 1987;414:8–14. doi: 10.1016/0006-8993(87)91321-7.
    1. Dong GH, Wang M, Zheng H, Wang Z, Du X, Potenza MN. Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: results from a cue-reactivity task. Psychological Medicine. 2020;51:1549–1561. doi: 10.1017/S003329172000032X.
    1. Dugard P, Todman J. Analysis of Pre‐test‐Post‐test Control Group Designs in Educational Research. Educational Psychology. 1995;15:181–198. doi: 10.1080/0144341950150207.
    1. Edwards S. Reinforcement principles for addiction medicine; from recreational drug use to psychiatric disorder. Progress in Brain Research. 2016;223:63–76. doi: 10.1016/bs.pbr.2015.07.005.
    1. Eikemo M, Løseth GE, Johnstone T, Gjerstad J, Willoch F, Leknes S. Sweet taste pleasantness is modulated by morphine and naltrexone. Psychopharmacology. 2016;233:3711–3723. doi: 10.1007/s00213-016-4403-x.
    1. Ellingsen DM, Wessberg J, Chelnokova O, Olausson H, Laeng B, Leknes S. In touch with your emotions: oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology. 2014;39:11–20. doi: 10.1016/j.psyneuen.2013.09.017.
    1. Elton A, Dove S, Spencer CN, Robinson DL, Boettiger CA. Naltrexone Acutely Enhances Connectivity Between the Ventromedial Prefrontal Cortex and a Left Frontoparietal Network. Alcoholism, Clinical and Experimental Research. 2019;43:965–978. doi: 10.1111/acer.13999.
    1. Feil J, Sheppard D, Fitzgerald PB, Yücel M, Lubman DI, Bradshaw JL. Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience & Biobehavioral Reviews. 2010;35:248–275. doi: 10.1016/j.neubiorev.2010.03.001.
    1. Frank MJ. Computational models of motivated action selection in corticostriatal circuits. Current Opinion in Neurobiology. 2011;21:381–386. doi: 10.1016/j.conb.2011.02.013.
    1. Grimm O, Nägele M, Küpper-Tetzel L, de Greck M, Plichta M, Reif A. No effect of a dopaminergic modulation fMRI task by amisulpride and L-DOPA on reward anticipation in healthy volunteers. Psychopharmacology. 2020;238:1333–1342. doi: 10.1007/s00213-020-05693-8.
    1. Hebart MN, Gläscher J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology. 2015;232:437–451. doi: 10.1007/s00213-014-3682-3.
    1. Johansson BA, Berglund M, Lindgren A. Efficacy of maintenance treatment with naltrexone for opioid dependence: a meta-analytical review. Addiction. 2006;101:491–503. doi: 10.1111/j.1360-0443.2006.01369.x.
    1. Kahnt T, Weber SC, Haker H, Robbins TW, Tobler PN. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans. The Journal of Neuroscience. 2015;35:4104–4111. doi: 10.1523/JNEUROSCI.4182-14.2015.
    1. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–238. doi: 10.1038/npp.2009.110.
    1. Korb S, Götzendorfer SJ, Massaccesi C, Sezen P, Graf I, Willeit M, Eisenegger C, Silani G. Dopaminergic and opioidergic regulation during anticipation and consumption of social and nonsocial rewards. eLife. 2020;9:e55797. doi: 10.7554/eLife.55797.
    1. Krystal JH, Cramer JA, Krol WF, Kirk GF, Rosenheck RA, Veterans Affairs Naltrexone Cooperative Study 425 Group Naltrexone in the treatment of alcohol dependence. The New England Journal of Medicine. 2001;345:1734–1739. doi: 10.1056/NEJMoa011127.
    1. Lako IM, van den Heuvel ER, Knegtering H, Bruggeman R, Taxis K. Estimating dopamine D₂ receptor occupancy for doses of 8 antipsychotics: a meta-analysis. Journal of Clinical Psychopharmacology. 2013;33:675–681. doi: 10.1097/JCP.0b013e3182983ffa.
    1. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience. 1991;40:657–671. doi: 10.1016/0306-4522(91)90003-7.
    1. Lim AC, Ghahremani DG, Grodin EN, Green R, Bujarski S, Hartwell EE, Courtney KE, Hutchison K, Miotto K, Ray LA. Neuroimaging findings from an experimental pharmacology trial of naltrexone in heavy drinkers of East Asian descent. Drug and Alcohol Dependence. 2019;200:181–190. doi: 10.1016/j.drugalcdep.2019.02.028.
    1. Løseth GE, Eikemo M, Leknes S. Effects of opioid receptor stimulation and blockade on touch pleasantness: a double-blind randomised trial. Social Cognitive and Affective Neuroscience. 2019;14:411–422. doi: 10.1093/scan/nsz022.
    1. Nestor LJ, Murphy A, McGonigle J, Orban C, Reed L, Taylor E, Flechais R, Paterson LM, Smith D, Bullmore ET, Ersche KD, Suckling J, Tait R, Elliott R, Deakin B, Rabiner I, Lingford-Hughes A, Nutt DJ, Sahakian B, Robbins TW, ICCAM Consortium Acute naltrexone does not remediate fronto-striatal disturbances in alcoholic and alcoholic polysubstance-dependent populations during a monetary incentive delay task. Addiction Biology. 2017;22:1576–1589. doi: 10.1111/adb.12444.
    1. Peciña S. Opioid reward “liking” and “wanting” in the nucleus accumbens. Physiology & Behavior. 2008;94:675–680. doi: 10.1016/j.physbeh.2008.04.006.
    1. Pool E, Sennwald V, Delplanque S, Brosch T, Sander D. Measuring wanting and liking from animals to humans: A systematic review. Neuroscience and Biobehavioral Reviews. 2016;63:124–142. doi: 10.1016/j.neubiorev.2016.01.006.
    1. Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I, Bianchetti G. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Human Psychopharmacology. 2002;17:1–13. doi: 10.1002/hup.320.
    1. Schoemaker H, Claustre Y, Fage D, Rouquier L, Chergui K, Curet O, Oblin A, Gonon F, Carter C, Benavides J, Scatton B. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. The Journal of Pharmacology and Experimental Therapeutics. 1997;280:83–97.
    1. Schultz W. Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews. 2015;95:853–951. doi: 10.1152/physrev.00023.2014.
    1. Sescousse G, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, Clark L, Cools R. Amplified Striatal Responses to Near-Miss Outcomes in Pathological Gamblers. Neuropsychopharmacology. 2016;41:2614–2623. doi: 10.1038/npp.2016.43.
    1. Skvortsova V, Degos B, Welter ML, Vidailhet M, Pessiglione M. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson’s Disease. The Journal of Neuroscience. 2017;37:6087–6097. doi: 10.1523/JNEUROSCI.2081-16.2017.
    1. Soutschek A, Burke CJ, Raja Beharelle A, Schreiber R, Weber SC, Karipidis II, Ten Velden J, Weber B, Haker H, Kalenscher T, Tobler PN. The dopaminergic reward system underpins gender differences in social preferences. Nature Human Behaviour. 2017;1:819–827. doi: 10.1038/s41562-017-0226-y.
    1. Soutschek A, Gvozdanovic G, Kozak R, Duvvuri S, de Martinis N, Harel B, Gray DL, Fehr E, Jetter A, Tobler PN. Dopaminergic D1 Receptor Stimulation Affects Effort and Risk Preferences. Biological Psychiatry. 2020a;87:678–685. doi: 10.1016/j.biopsych.2019.09.002.
    1. Soutschek A, Kozak R, de Martinis N, Howe W, Burke CJ, Fehr E, Jetter A, Tobler PN. Activation of D1 receptors affects human reactivity and flexibility to valued cues. Neuropsychopharmacology. 2020b;45:780–785. doi: 10.1038/s41386-020-0617-z.
    1. Srisurapanont M, Jarusuraisin N. Naltrexone for the treatment of alcoholism: a meta-analysis of randomized controlled trials. The International Journal of Neuropsychopharmacology. 2005;8:267–280. doi: 10.1017/S1461145704004997.
    1. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R Package for Causal Mediation Analysis. Journal of Statistical Software. 2014;59:i05. doi: 10.18637/jss.v059.i05.
    1. van den Bos W, Rodriguez CA, Schweitzer JB, McClure SM. Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting. The Journal of Neuroscience. 2014;34:10298–10310. doi: 10.1523/JNEUROSCI.4105-13.2014.
    1. van den Bos W, Rodriguez CA, Schweitzer JB, McClure SM. Adolescent impatience decreases with increased frontostriatal connectivity. PNAS. 2015;112:E3765–E3774. doi: 10.1073/pnas.1423095112.
    1. Venugopalan VV, Casey KF, Benkelfat C, Fellows LK, Leyton M. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2011;36:2469–2476. doi: 10.1038/npp.2011.135.
    1. Verebey K, Kogan MJ, DePace A, Mulé SJ. Quantitative determination of naltrexone and betanaltrexol in human plasma using electron capture detection. Journal of Chromatography A. 1976;118:331–335. doi: 10.1016/S0021-9673(00)82170-6.
    1. Weber SC, Beck-Schimmer B, Kajdi M-E, Müller D, Tobler PN, Quednow BB. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Translational Psychiatry. 2016;6:e850. doi: 10.1038/tp.2016.113.
    1. Weber SC, Kahnt T, Quednow BB, Tobler PN. Frontostriatal pathways gate processing of behaviorally relevant reward dimensions. PLOS Biology. 2018;16:e2005722. doi: 10.1371/journal.pbio.2005722.
    1. Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, McCaul ME. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology. 2008;33:653–665. doi: 10.1038/sj.npp.1301440.
    1. Westbrook A, van den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Cools R, Frank MJ. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science. 2020;367:1362–1366. doi: 10.1126/science.aaz5891.
    1. Yuan K, Yu D, Bi Y, Wang R, Li M, Zhang Y, Dong M, Zhai J, Li Y, Lu X, Tian J. The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers. Human Brain Mapping. 2017;38:4644–4656. doi: 10.1002/hbm.23690.
    1. Zénon A, Devesse S, Olivier E. Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost. The Journal of Neuroscience. 2016;36:9516–9525. doi: 10.1523/JNEUROSCI.4467-15.2016.
    1. Zhao X, Lynch JG, Chen Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. Journal of Consumer Research. 2010;37:197–206. doi: 10.1086/651257.

Source: PubMed

3
Abonnieren