Dexmedetomidine: What's New for Pediatrics? A Narrative Review

Mohamed Mahmoud, Egidio Barbi, Keira P Mason, Mohamed Mahmoud, Egidio Barbi, Keira P Mason

Abstract

Over the past few years, despite the lack of approved pediatric labelling, dexmedetomidine's (DEX) use has become more prevalent in pediatric clinical practice as well as in research trials. Its respiratory-sparing effects and bioavailability by various routes are only some of the valued features of DEX. In recent years the potential organ-protective effects of DEX, with the possibility for preserving neurocognitive function, has put it in the forefront of clinical and bench research. This comprehensive review focused on the pediatric literature but presents relevant, supporting adult and animal studies in order to detail the recent growing body of literature around the pharmacology, end-organ effects, organ-protective effects, alternative routes of administration, synergetic effects, and clinical applications, with considerations for the future.

Keywords: anesthesia; neuroprotection; neurotoxicity; pediatric; pharmacology; sedation; side effects.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Final population pharmacokinetic (PK) model diagnostic plots: observed versus population prediction (A) and individual prediction (B), conditional weighted residuals versus population predictions (C), and time after last dose (D). The solid line in (A,B) is the line of identity. The solid line in (C,D) is a reference line at y = 0. The dashed lines in (AD) are smooth lines.
Figure 2
Figure 2
Schematic illustration that surgical trauma triggers perioperative stress, systemic inflammation, and immune suppression, all of which are negated by dexmedetomidine (DEX). HPA, hypothalamic-pituitary-adrenal; SNS, sympathetic nervous system [36].
Figure 3
Figure 3
Topographic electroencephalogram maps detailing group-averaged global coherence for each electroencephalogram frequency of interest. (A) Dexmedetomidine is associated with increased occipital theta global coherence. (B) Dexmedetomidine is associated with a shift in the globally coherent occipital awake alpha to frontal regions. (C) Dexmedetomidine is associated with globally coherent fronto-central spindle oscillations [14].
Figure 4
Figure 4
Contrast images showing regions where functional connectivity is higher during dexmedetomidine- than propofol-induced unresponsiveness (dexmedetomidine > propofol), dexmedetomidine than N3 sleep (dexmedetomidine > sleep), N3 sleep than propofol (sleep > propofol), N3 sleep than dexmedetomidine (sleep > dexmedetomidine), propofol than N3 sleep (propofol > sleep), or propofol than dexmedetomidine (propofol > dexmedetomidine). Only those contrasts where significant differences (false discovery rate-corrected p < 0.05) were found are shown, as was the case for connectivity with the thalamus (thalamus), within the default mode network (DMN), the right executive control network (right ECN), the auditory network (auditory resting state network RSN (Auditory resting state network)), and the visual network (visual RSN). Contrast images are superimposed on a canonical three-dimensional brain representation providing a left, right, and sagittal view of the brain. A left or right view of the internal face of the brain was chosen as a function of the presence of significant clusters or not. When no significant clusters were visible on one view, the other one was chosen [15].

References

    1. Mahmoud M., Mason K.P. Dexmedetomidine: Review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br. J. Anaesth. 2015;115:171–182. doi: 10.1093/bja/aev226.
    1. Su F., Gastonguay M.R., Nicolson S.C., DiLiberto M., Ocampo-Pelland A., Zuppa A.F. Dexmedetomidine Pharmacology in Neonates and Infants After Open Heart Surgery. Anesth. Analg. 2016;122:1556–1566. doi: 10.1213/ANE.0000000000000869.
    1. Greenberg R.G., Wu H., Laughon M., Capparelli E., Rowe S., Zimmerman K.O., Smith P.B., Cohen-Wolkowiez M. Population pharmacokinetics of dexmedetomidine in infants. J. Clin. Pharmacol. 2017;57:1174–1182. doi: 10.1002/jcph.904.
    1. van Dijkman S.C., De Cock P., Smets K., Decaluwe W., Smits A., Allegaert K., Vande Walle J., De Paepe P., Della Pasqua O. Dose rationale and pharmacokinetics of dexmedetomidine in mechanically ventilated new-borns: Impact of design optimisation. Eur. J. Clin. Pharmacol. 2019;75:1393–1404. doi: 10.1007/s00228-019-02708-y.
    1. Hannivoort L.N., Eleveld D.J., Proost J.H., Reyntjens K.M., Absalom A.R., Vereecke H.E., Struys M.M. Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers. Anesthesiology. 2015;123:357–367. doi: 10.1097/ALN.0000000000000740.
    1. Miller J.W., Balyan R., Dong M., Mahmoud M., Lam J.E., Pratap J.N., Paquin J.R., Li B.L., Spaeth J.P., Vinks A., et al. Does intranasal dexmedetomidine provide adequate plasma concentrations for sedation in children: A pharmacokinetic study. Br. J. Anaesth. 2018;120:1056–1065. doi: 10.1016/j.bja.2018.01.035.
    1. Anttila M., Penttilä J., Helminen A., Vuorilehto L., Scheinin H. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br. J. Clin. Pharmacol. 2003;56:691–693. doi: 10.1046/j.1365-2125.2003.01944.x.
    1. Iirola T., Vilo S., Manner T., Aantaa R., Lahtinen M., Scheinin M., Olkkola K.T. Bioavailability of dexmedetomidine after intranasal administration. Eur. J. Clin. Pharmacol. 2011;67:825–831. doi: 10.1007/s00228-011-1002-y.
    1. Uusalo P., Guillaume S., Siren S., Manner T., Vilo S., Scheinin M., Saari T.I. Pharmacokinetics and Sedative Effects of Intranasal Dexmedetomidine in Ambulatory Pediatric Patients. Anesth. Analg. 2020;130:949–957. doi: 10.1213/ANE.0000000000004264.
    1. Perez-Guille M.G., Toledo-Lopez A., Rivera-Espinosa L., Alemon-Medina R., Murata C., Lares-Asseff I., Chavez-Pacheco J.L., Gomez-Garduno J., Zamora Gutierrez A.L., Orozco-Galicia C., et al. Population Pharmacokinetics and Pharmacodynamics of Dexmedetomidine in Children Undergoing Ambulatory Surgery. Anesth. Analg. 2018;127:716–723. doi: 10.1213/ANE.0000000000003413.
    1. Colin P.J., Hannivoort L.N., Eleveld D.J., Reyntjens K., Absalom A.R., Vereecke H.E.M., Struys M. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br. J. Anaesth. 2017;119:211–220. doi: 10.1093/bja/aex086.
    1. Damian M.A., Hammer G.B., Elkomy M.H., Frymoyer A., Drover D.R., Su F. Pharmacokinetics of Dexmedetomidine in Infants and Children After Orthotopic Liver Transplantation. Anesth. Analg. 2020;130:209–216. doi: 10.1213/ANE.0000000000003761.
    1. Rolle A., Paredes S., Cortinez L.I., Anderson B.J., Quezada N., Solari S., Allende F., Torres J., Cabrera D., Contreras V., et al. Dexmedetomidine metabolic clearance is not affected by fat mass in obese patients. Br. J. Anaesth. 2018;120:969–977. doi: 10.1016/j.bja.2018.01.040.
    1. Akeju O., Kim S.E., Vazquez R., Rhee J., Pavone K.J., Hobbs L.E., Purdon P.L., Brown E.N. Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations. PLoS ONE. 2016;11:e0163431. doi: 10.1371/journal.pone.0163431.
    1. Guldenmund P., Vanhaudenhuyse A., Sanders R.D., Sleigh J., Bruno M.A., Demertzi A., Bahri M.A., Jaquet O., Sanfilippo J., Baquero K., et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 2017;119:674–684. doi: 10.1093/bja/aex257.
    1. Nelson L.E., Lu J., Guo T., Saper C.B., Franks N.P., Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–436. doi: 10.1097/00000542-200302000-00024.
    1. Doze V.A., Chen B.X., Maze M. Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology. 1989;71:75–79. doi: 10.1097/00000542-198907000-00014.
    1. Hsu Y.W., Cortinez L.I., Robertson K.M., Keifer J.C., Sum-Ping S.T., Moretti E.W., Young C.C., Wright D.R., Macleod D.B., Somma J. Dexmedetomidine pharmacodynamics: Part I: Crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–1076. doi: 10.1097/00000542-200411000-00005.
    1. Mahmoud M., Ishman S.L., McConnell K., Fleck R., Shott S., Mylavarapu G., Gutmark E., Zou Y., Szczesniak R., Amin R.S. Upper Airway Reflexes are Preserved During Dexmedetomidine Sedation in Children With Down Syndrome and Obstructive Sleep Apnea. J. Clin. Sleep Med. 2017;13:721–727. doi: 10.5664/jcsm.6592.
    1. Chatterjee D., Friedman N., Shott S., Mahmoud M. Anesthetic dilemmas for dynamic evaluation of the pediatric upper airway. Semin. Cardiothorac. Vasc. Anesth. 2014;18:371–378. doi: 10.1177/1089253214548804.
    1. Mahmoud M., Gunter J., Donnelly L.F., Wang Y., Nick T.G., Sadhasivam S. A comparison of dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth. Analg. 2009;109:745–753. doi: 10.1213/ane.0b013e3181adc506.
    1. Mahmoud M., Jung D., Salisbury S., McAuliffe J., Gunter J., Patio M., Donnelly L.F., Fleck R. Effect of increasing depth of dexmedetomidine and propofol anesthesia on upper airway morphology in children and adolescents with obstructive sleep apnea. J. Clin. Anesth. 2013;25:529–541. doi: 10.1016/j.jclinane.2013.04.011.
    1. Padiyara T.V., Bansal S., Jain D., Arora S., Gandhi K. Dexmedetomidine versus propofol at different sedation depths during drug-induced sleep endoscopy: A randomized trial. Laryngoscope. 2020;130:257–262. doi: 10.1002/lary.27903.
    1. Chang E.T., Certal V., Song S.A., Zaghi S., Carrasco-Llatas M., Torre C., Capasso R., Camacho M. Dexmedetomidine versus propofol during drug-induced sleep endoscopy and sedation: A systematic review. Sleep Breath. Schlaf Atm. 2017;21:727–735. doi: 10.1007/s11325-017-1465-x.
    1. Di M., Han Y., Yang Z., Liu H., Ye X., Lai H., Li J., ShangGuan W., Lian Q. Tracheal extubation in deeply anesthetized pediatric patients after tonsillectomy: A comparison of high-concentration sevoflurane alone and low-concentration sevoflurane in combination with dexmedetomidine pre-medication. BMC Anesthesiol. 2017;17:28. doi: 10.1186/s12871-017-0317-3.
    1. Fan Q., Hu C., Ye M., Shen X. Dexmedetomidine for tracheal extubation in deeply anesthetized adult patients after otologic surgery: A comparison with remifentanil. BMC Anesthesiol. 2015;15:106. doi: 10.1186/s12871-015-0088-7.
    1. Yao Y., Qian B., Lin Y., Wu W., Ye H., Chen Y. Intranasal dexmedetomidine premedication reduces minimum alveolar concentration of sevoflurane for laryngeal mask airway insertion and emergence delirium in children: A prospective, randomized, double-blind, placebo-controlled trial. Paediatr. Anaesth. 2015;25:492–498. doi: 10.1111/pan.12574.
    1. Wei L., Deng X., Sui J., Wang L., Liu J. Dexmedetomidine Improves Intubating Conditions Without Muscle Relaxants in Children After Induction With Propofol and Remifentanil. Anesth. Analg. 2015;121:785–790. doi: 10.1213/ANE.0000000000000812.
    1. He L., Wang X., Zheng S. Effects of dexmedetomidine on sevoflurane requirement for 50% excellent tracheal intubation in children: A randomized, double-blind comparison. Paediatr. Anaesth. 2014;24:987–993. doi: 10.1111/pan.12430.
    1. Chen K.Z., Ye M., Hu C.B., Shen X. Dexmedetomidine vs remifentanil intravenous anaesthesia and spontaneous ventilation for airway foreign body removal in children. Br. J. Anaesth. 2014;112:892–897. doi: 10.1093/bja/aet490.
    1. Li S., Liu H., Zhang J., Liu Y., Yu Q., Sun M., Tian Q., Yang F., Lei Y., Liu X., et al. The 95% effective dose of intranasal dexmedetomidine sedation for pulmonary function testing in children aged 1–3 years: A biased coin design up-and-down sequential method. J. Clin. Anesth. 2020;63:109746. doi: 10.1016/j.jclinane.2020.109746.
    1. Xu L., Bao H., Si Y., Wang X. Effects of dexmedetomidine on early and late cytokines during polymicrobial sepsis in mice. Inflamm. Res. 2013;62:507–514. doi: 10.1007/s00011-013-0604-5.
    1. Chen Y., Miao L., Yao Y., Wu W., Wu X., Gong C., Qiu L., Chen J. Dexmedetomidine Ameliorate CLP-Induced Rat Intestinal Injury via Inhibition of Inflammation. Mediat. Inflamm. 2015;2015:918361. doi: 10.1155/2015/918361.
    1. Ferreira J.A., Bissell B.D. Misdirected Sympathy: The Role of Sympatholysis in Sepsis and Septic Shock. J. Intensive Care Med. 2018;33:74–86. doi: 10.1177/0885066616689548.
    1. Li Y., Wang B., Zhang L.L., He S.F., Hu X.W., Wong G.T., Zhang Y. Dexmedetomidine Combined with General Anesthesia Provides Similar Intraoperative Stress Response Reduction When Compared with a Combined General and Epidural Anesthetic Technique. Anesth. Analg. 2016;122:1202–1210. doi: 10.1213/ANE.0000000000001165.
    1. Wang K., Wu M., Xu J., Wu C., Zhang B., Wang G., Ma D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: Systematic review and meta-analysis. Br. J. Anaesth. 2019;123:777–794. doi: 10.1016/j.bja.2019.07.027.
    1. Liu J., Zhang S., Fan X., Yuan F., Dai J., Hu J. Dexmedetomidine Preconditioning Ameliorates Inflammation and Blood-Spinal Cord Barrier Damage After Spinal Cord Ischemia-Reperfusion Injury by Down-Regulation High Mobility Group Box 1-Toll-Like Receptor 4-Nuclear Factor kappaB Signaling Pathway. Spine. 2019;44:E74–E81. doi: 10.1097/BRS.0000000000002772.
    1. Sun Z., Zhao T., Lv S., Gao Y., Masters J., Weng H. Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. J. Transl. Med. 2018;16:209. doi: 10.1186/s12967-018-1583-7.
    1. Huang Y., Lu Y., Zhang L., Yan J., Jiang J., Jiang H. Perineural dexmedetomidine attenuates inflammation in rat sciatic nerve via the NF-kappaB pathway. Int. J. Mol. Sci. 2014;15:4049–4059. doi: 10.3390/ijms15034049.
    1. Mason K.P., O’Mahony E., Zurakowski D., Libenson M.H. Effects of dexmedetomidine sedation on the EEG in children. Paediatr. Anaesth. 2009;19:1175–1183. doi: 10.1111/j.1460-9592.2009.03160.x.
    1. Wu X.H., Cui F., Zhang C., Meng Z.T., Wang D.X., Ma J., Wang G.F., Zhu S.N., Ma D. Low-dose Dexmedetomidine Improves Sleep Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit: A Pilot Randomized Controlled Trial. Anesthesiology. 2016;125:979–991. doi: 10.1097/ALN.0000000000001325.
    1. Hashmi J.A., Loggia M.L., Khan S., Gao L., Kim J., Napadow V., Brown E.N., Akeju O. Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks. Anesthesiology. 2017;126:419–430. doi: 10.1097/ALN.0000000000001509.
    1. Kallionpaa R.E., Scheinin A., Kallionpaa R.A., Sandman N., Kallioinen M., Laitio R., Laitio T., Kaskinoro K., Kuusela T., Revonsuo A., et al. Spoken words are processed during dexmedetomidine-induced unresponsiveness. Br. J. Anaesth. 2018;121:270–280. doi: 10.1016/j.bja.2018.04.032.
    1. Berkenbosch J.W., Tobias J.D. Development of bradycardia during sedation with dexmedetomidine in an infant concurrently receiving digoxin. Pediatric Crit. Care Med. 2003;4:203–205. doi: 10.1097/01.PCC.0000059737.86673.28.
    1. Fritock M.D., Ing R.J., Twite M.D. Cardiac Arrest in 2 Neonates Receiving Amiodarone and Dexmedetomidine. J. Cardiothorac. Vasc. Anesth. 2017;31:2135–2138. doi: 10.1053/j.jvca.2017.02.176.
    1. Ohmori T., Shiota N., Haramo A., Masuda T., Maruyama F., Wakabayashi K., Adachi Y.U., Nakazawa K. Post-operative cardiac arrest induced by co-administration of amiodarone and dexmedetomidine: A case report. J. Intensive Care. 2015;3:43. doi: 10.1186/s40560-015-0109-0.
    1. Mason K.P., Zgleszewski S., Forman R.E., Stark C., DiNardo J.A. An exaggerated hypertensive response to glycopyrrolate therapy for bradycardia associated with high-dose dexmedetomidine. Anesth. Analg. 2009;108:906–908. doi: 10.1213/ane.0b013e3181948a6f.
    1. Subramanyam R., Cudilo E.M., Hossain M.M., McAuliffe J., Wu J., Patino M., Gunter J., Mahmoud M. To Pretreat or Not to Pretreat: Prophylactic Anticholinergic Administration Before Dexmedetomidine in Pediatric Imaging. Anesth. Analg. 2015;121:479–485. doi: 10.1213/ANE.0000000000000765.
    1. Kang D., Lim C., Shim D.J., Kim H., Kim J.W., Chung H.J., Shin Y., Kim J.D., Ryu S.J. The correlation of heart rate between natural sleep and dexmedetomidine sedation. Korean J. Anesthesiol. 2019;72:164–168. doi: 10.4097/kja.d.18.00208.
    1. Slupe A.M., Minnier J., Raitt M.H., Zarraga I.G.E., MacMurdy K.S., Jessel P.M. Dexmedetomidine Sedation for Paroxysmal Supraventricular Tachycardia Ablation Is Not Associated with Alteration of Arrhythmia Inducibility. Anesth. Analg. 2019;129:1529–1535. doi: 10.1213/ANE.0000000000003359.
    1. Hultin M., Sundberg E. Spontaneous Conversions of Supraventricular Tachycardia to Sinus Rhythm in Children After Premedication with Intranasal Dexmedetomidine: A Case Report. A A Pract. 2018;11:219–220. doi: 10.1213/XAA.0000000000000786.
    1. Botros J.M., Mahmoud A.M.S., Ragab S.G., Ahmed M.A.A., Roushdy H.M.S., Yassin H.M., Bolus M.L., Goda A.S. Comparative study between Dexmedetomidine and Ondansteron for prevention of post spinal shivering. A randomized controlled trial. BMC Anesthesiol. 2018;18:179. doi: 10.1186/s12871-018-0640-3.
    1. Liu Z.X., Xu F.Y., Liang X., Zhou M., Wu L., Wu J.R., Xia J.H., Zou Z. Efficacy of dexmedetomidine on postoperative shivering: A meta-analysis of clinical trials. Can. J. Anaesth. J. Can. D’anesthésie. 2015;62:816–829. doi: 10.1007/s12630-015-0368-1.
    1. Kruger B.D., Kurmann J., Corti N., Spahn D.R., Bettex D., Rudiger A. Dexmedetomidine-Associated Hyperthermia: A Series of 9 Cases and a Review of the Literature. Anesth. Analg. 2017;125:1898–1906. doi: 10.1213/ANE.0000000000002353.
    1. Pan W., Lin L., Zhang N., Yuan F., Hua X., Wang Y., Mo L. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-kappaB/COX-2 Pathways. Cell. Mol. Neurobiol. 2016;36:1179–1188. doi: 10.1007/s10571-015-0315-2.
    1. Perez-Zoghbi J.F., Zhu W., Grafe M.R., Brambrink A.M. Dexmedetomidine-mediated neuroprotection against sevoflurane-induced neurotoxicity extends to several brain regions in neonatal rats. Br. J. Anaesth. 2017;119:506–516. doi: 10.1093/bja/aex222.
    1. Shan Y., Yang F., Tang Z., Bi C., Sun S., Zhang Y., Liu H. Dexmedetomidine Ameliorates the Neurotoxicity of Sevoflurane on the Immature Brain Through the BMP/SMAD Signaling Pathway. Front. Neurosci. 2018;12:964. doi: 10.3389/fnins.2018.00964.
    1. Wang X., Shan Y., Tang Z., Gao L., Liu H. Neuroprotective effects of dexmedetomidine against isoflurane-induced neuronal injury via glutamate regulation in neonatal rats. Drug Des. Dev. Ther. 2019;13:153–160. doi: 10.2147/DDDT.S163197.
    1. Hu J., Vacas S., Feng X., Lutrin D., Uchida Y., Lai I.K., Maze M. Dexmedetomidine Prevents Cognitive Decline by Enhancing Resolution of High Mobility Group Box 1 Protein-induced Inflammation through a Vagomimetic Action in Mice. Anesthesiology. 2018;128:921–931. doi: 10.1097/ALN.0000000000002038.
    1. Xu H., Zhao B., She Y., Song X. Dexmedetomidine ameliorates lidocaine-induced spinal neurotoxicity via inhibiting glutamate release and the PKC pathway. Neurotoxicology. 2018;69:77–83. doi: 10.1016/j.neuro.2018.09.004.
    1. Wu J., Vogel T., Gao X., Lin B., Kulwin C., Chen J. Neuroprotective effect of dexmedetomidine in a murine model of traumatic brain injury. Sci. Rep. 2018;8:4935. doi: 10.1038/s41598-018-23003-3.
    1. Hu S.P., Zhao J.J., Wang W.X., Liu Y., Wu H.F., Chen C., Yu L., Gui J.B. Dexmedetomidine increases acetylation level of histone through ERK1/2 pathway in dopamine neuron. Hum. Exp. Toxicol. 2017;36:474–482. doi: 10.1177/0960327116652458.
    1. Wang Y., Han R., Zuo Z. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage. Br. J. Anaesth. 2016;116:384–392. doi: 10.1093/bja/aev549.
    1. Bell M.T., Puskas F., Bennett D.T., Herson P.S., Quillinan N., Fullerton D.A., Reece T.B. Dexmedetomidine, an alpha-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J. Thorac. Cardiovasc. Surg. 2014;147:500–506. doi: 10.1016/j.jtcvs.2013.07.043.
    1. Huang J., Jiang Q. Dexmedetomidine Protects Against Neurological Dysfunction in a Mouse Intracerebral Hemorrhage Model by Inhibiting Mitochondrial Dysfunction-Derived Oxidative Stress. J. Stroke Cerebrovasc. Dis. 2019;28:1281–1289. doi: 10.1016/j.jstrokecerebrovasdis.2019.01.016.
    1. Cai Y., Xu H., Yan J., Zhang L., Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol. Med. Rep. 2014;9:1542–1550. doi: 10.3892/mmr.2014.2034.
    1. Sabir H., Bishop S., Cohen N., Maes E., Liu X., Dingley J., Thoresen M. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain. Anesthesiology. 2013;119:345–357. doi: 10.1097/ALN.0b013e318294934d.
    1. McCann M.E., Soriano S.G. Does general anesthesia affect neurodevelopment in infants and children? BMJ. 2019;367:l6459. doi: 10.1136/bmj.l6459.
    1. Andropoulos D.B. Effect of Anesthesia on the Developing Brain: Infant and Fetus. Fetal Diagn. 2018;43:1–11. doi: 10.1159/000475928.
    1. Andropoulos D.B., Greene M.F. Anesthesia and Developing Brains—Implications of the FDA Warning. N. Engl. J. Med. 2017;376:905–907. doi: 10.1056/NEJMp1700196.
    1. U.S. Food and Drug Administration FDA Drug Safety Communication: FDA Approves Label Changes for Use of General Anesthetic and Sedation Drugs in Young Children. [(accessed on 12 June 2020)]; Available online: .
    1. Cho J.S., Shim J.K., Soh S., Kim M.K., Kwak Y.L. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89:693–700. doi: 10.1038/ki.2015.306.
    1. Jo Y.Y., Kim J.Y., Lee J.Y., Choi C.H., Chang Y.J., Kwak H.J. The effect of intraoperative dexmedetomidine on acute kidney injury after pediatric congenital heart surgery: A prospective randomized trial. Medicine. 2017;96:e7480. doi: 10.1097/MD.0000000000007480.
    1. Kwiatkowski D.M., Axelrod D.M., Sutherland S.M., Tesoro T.M., Krawczeski C.D. Dexmedetomidine Is Associated With Lower Incidence of Acute Kidney Injury After Congenital Heart Surgery. Pediatr. Crit. Care Med. 2016;17:128–134. doi: 10.1097/PCC.0000000000000611.
    1. Shi R., Tie H.T. Dexmedetomidine as a promising prevention strategy for cardiac surgery-associated acute kidney injury: A meta-analysis. Crit. Care (Lond. Engl.) 2017;21:198. doi: 10.1186/s13054-017-1776-0.
    1. Bayram A., Ulgey A., Baykan A., Narin N., Narin F., Esmaoglu A., Boyaci A. The effects of dexmedetomidine on early stage renal functions in pediatric patients undergoing cardiac angiography using non-ionic contrast media: A double-blind, randomized clinical trial. Paediatr. Anaesth. 2014;24:426–432. doi: 10.1111/pan.12348.
    1. Ji F., Li Z., Young J.N., Yeranossian A., Liu H. Post-bypass dexmedetomidine use and postoperative acute kidney injury in patients undergoing cardiac surgery with cardiopulmonary bypass. PLoS ONE. 2013;8:e77446. doi: 10.1371/journal.pone.0077446.
    1. Ammar A.S., Mahmoud K.M., Kasemy Z.A., Helwa M.A. Cardiac and renal protective effects of dexmedetomidine in cardiac surgeries: A randomized controlled trial. Saudi J. Anaesth. 2016;10:395–401. doi: 10.4103/1658-354x.177340.
    1. Gao J.M., Meng X.W., Zhang J., Chen W.R., Xia F., Peng K., Ji F.H. Dexmedetomidine Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Suppressing TLR4-MyD88-NF-kappaB Signaling. BioMed Res. Int. 2017;2017:1674613. doi: 10.1155/2017/1674613.
    1. Zhang J.J., Peng K., Zhang J., Meng X.W., Ji F.H. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-small ka, CyrillicB signaling pathway. PLoS ONE. 2017;12:e0172006. doi: 10.1371/journal.pone.0172006.
    1. Zhang J., Xia F., Zhao H., Peng K., Liu H., Meng X., Chen C., Ji F. Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury. PLoS ONE. 2019;14:e0218726. doi: 10.1371/journal.pone.0218726.
    1. Gong Z., Ma L., Zhong Y.L., Li J., Lv J., Xie Y.B. Myocardial protective effects of dexmedetomidine in patients undergoing cardiac surgery: A meta-analysis and systematic review. Exp. Ther. Med. 2017;13:2355–2361. doi: 10.3892/etm.2017.4227.
    1. Ríha H., Kotulák T., Březina A., Hess L., Kramář P., Szárszoi O., Netuka I., Pirk J. Comparison of the effects of ketamine-dexmedetomidine and sevoflurane-sufentanil anesthesia on cardiac biomarkers after cardiac surgery: An observational study. Physiol. Res. 2012;61:63–72. doi: 10.33549/physiolres.932224.
    1. Uusalo P., Al-Ramahi D., Tilli I., Aantaa R.A., Scheinin M., Saari T.I. Subcutaneously administered dexmedetomidine is efficiently absorbed and is associated with attenuated cardiovascular effects in healthy volunteers. Eur. J. Clin. Pharmacol. 2018;74:1047–1054. doi: 10.1007/s00228-018-2461-1.
    1. Jun J.H., Kim K.N., Kim J.Y., Song S.M. The effects of intranasal dexmedetomidine premedication in children: A systematic review and meta-analysis. Can. J. Anaesth. J. Can. D’anesthésie. 2017;64:947–961. doi: 10.1007/s12630-017-0917-x.
    1. Tug A., Hanci A., Turk H.S., Aybey F., Isil C.T., Sayin P., Oba S. Comparison of Two Different Intranasal Doses of Dexmedetomidine in Children for Magnetic Resonance Imaging Sedation. Paediatr. Drugs. 2015;17:479–485. doi: 10.1007/s40272-015-0145-1.
    1. Liu S.E., Hui T., Wong S., Irwin M.G., Yuen V., Wong G.L.S. Abstract PR251: A Comparison of Two Doses of Intranasal Dexmedetomidine for Sedative Premedication in Children. Anesth. Analg. 2016;123:327. doi: 10.1213/01.ane.0000492647.41947.ef.
    1. Yang F., Liu Y., Yu Q., Li S., Zhang J., Sun M., Liu L., Lei Y., Tian Q., Liu H., et al. Analysis of 17 948 pediatric patients undergoing procedural sedation with a combination of intranasal dexmedetomidine and ketamine. Paediatr. Anaesth. 2019;29:85–91. doi: 10.1111/pan.13526.
    1. Miller J.W., Divanovic A.A., Hossain M.M., Mahmoud M.A., Loepke A.W. Dosing and efficacy of intranasal dexmedetomidine sedation for pediatric transthoracic echocardiography: A retrospective study. Can. J. Anaesth. J. Can. D’anesthésie. 2016;63:834–841. doi: 10.1007/s12630-016-0617-y.
    1. Tenney J.R., Miller J.W., Rose D.F. Intranasal Dexmedetomidine for Sedation During Magnetoencephalography. J. Clin. Neurophysiol. 2019;36:371–374. doi: 10.1097/WNP.0000000000000602.
    1. Behrle N., Birisci E., Anderson J., Schroeder S., Dalabih A. Intranasal Dexmedetomidine as a Sedative for Pediatric Procedural Sedation. J. Pediatr. Pharmacol. Ther. 2017;22:4–8. doi: 10.5863/1551-6776-22.1.4.
    1. Li L., Zhou J., Yu D., Hao X., Xie Y., Zhu T. Intranasal dexmedetomidine versus oral chloral hydrate for diagnostic procedures sedation in infants and toddlers: A systematic review and meta-analysis. Medicine. 2020;99:e19001. doi: 10.1097/MD.0000000000019001.
    1. Zhang W., Wang Z., Song X., Fan Y., Tian H., Li B. Comparison of rescue techniques for failed chloral hydrate sedation for magnetic resonance imaging scans—Additional chloral hydrate vs. intranasal dexmedetomidine. Paediatr. Anaesth. 2016;26:273–279. doi: 10.1111/pan.12824.
    1. Ghai B., Jain K., Saxena A.K., Bhatia N., Sodhi K.S. Comparison of oral midazolam with intranasal dexmedetomidine premedication for children undergoing CT imaging: A randomized, double-blind, and controlled study. Paediatr. Anaesth. 2017;27:37–44. doi: 10.1111/pan.13010.
    1. Mukherjee A., Das A., Basunia S.R., Chattopadhyay S., Kundu R., Bhattacharyya R. Emergence agitation prevention in paediatric ambulatory surgery: A comparison between intranasal Dexmedetomidine and Clonidine. J. Res. Pharm. Pract. 2015;4:24–30. doi: 10.4103/2279-042x.150051.
    1. Cozzi G., Monasta L., Maximova N., Poropat F., Magnolato A., Sbisa E., Norbedo S., Sternissa G., Zanon D., Barbi E. Combination of intranasal dexmedetomidine and oral midazolam as sedation for pediatric MRI. Paediatr. Anaesth. 2017;27:976–977. doi: 10.1111/pan.13202.
    1. Bua J., Massaro M., Cossovel F., Monasta L., Brovedani P., Cozzi G., Barbi E., Demarini S., Travan L. Intranasal dexmedetomidine, as midazolam-sparing drug, for MRI in preterm neonates. Paediatr. Anaesth. 2018;28:747–748. doi: 10.1111/pan.13454.
    1. Patel V., Singh N., Saksena A.K., Singh S., Sonkar S.K., Jolly S.M. A comparative assessment of intranasal and oral dexmedetomidine for procedural sedation in pediatric dental patients. J. Indian Soc. Pedod. Prev. Dent. 2018;36:370–375. doi: 10.4103/JISPPD.JISPPD_40_18.
    1. Boriosi J.P., Eickhoff J.C., Hollman G.A. Safety and Efficacy of Buccal Dexmedetomidine for MRI Sedation in School-Aged Children. Hosp. Pediatrics. 2019;9:348–354. doi: 10.1542/hpeds.2018-0162.
    1. Xu D., Xiu M., Zhang X., Zhu P., Tian L., Feng J., Wu Y., Zhao Z., Luan H. Effect of dexmedetomidine added to ropivicaine for caudal anesthesia in patients undergoing hemorrhoidectomy: A prospective randomized controlled trial. Medicine. 2018;97:e11731. doi: 10.1097/MD.0000000000011731.
    1. Tu Z., Tan X., Li S., Cui J. The Efficacy and Safety of Dexmedetomidine Combined with Bupivacaine on Caudal Epidural Block in Children: A Meta-Analysis. Med. Sci. Monit. 2019;25:165–173. doi: 10.12659/MSM.913098.
    1. Lundblad M., Marhofer D., Eksborg S., Lonnqvist P.A. Dexmedetomidine as adjunct to ilioinguinal/iliohypogastric nerve blocks for pediatric inguinal hernia repair: An exploratory randomized controlled trial. Paediatr. Anaesth. 2015;25:897–905. doi: 10.1111/pan.12704.
    1. Abdulatif M., Fawzy M., Nassar H., Hasanin A., Ollaek M., Mohamed H. The effects of perineural dexmedetomidine on the pharmacodynamic profile of femoral nerve block: A dose-finding randomised, controlled, double-blind study. Anaesthesia. 2016;71:1177–1185. doi: 10.1111/anae.13603.
    1. Andersen J.H., Grevstad U., Siegel H., Dahl J.B., Mathiesen O., Jaeger P. Does Dexmedetomidine Have a Perineural Mechanism of Action When Used as an Adjuvant to Ropivacaine?: A Paired, Blinded, Randomized Trial in Healthy Volunteers. Anesthesiology. 2017;126:66–73. doi: 10.1097/ALN.0000000000001429.
    1. Vorobeichik L., Brull R., Abdallah F.W. Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: A systematic review and meta-analysis of randomized controlled trials. Br. J. Anaesth. 2017;118:167–181. doi: 10.1093/bja/aew411.
    1. Jung H.S., Seo K.H., Kang J.H., Jeong J.Y., Kim Y.S., Han N.R. Optimal dose of perineural dexmedetomidine for interscalene brachial plexus block to control postoperative pain in patients undergoing arthroscopic shoulder surgery: A prospective, double-blind, randomized controlled study. Medicine. 2018;97:e0440. doi: 10.1097/MD.0000000000010440.
    1. Bharti N., Sardana D.K., Bala I. The Analgesic Efficacy of Dexmedetomidine as an Adjunct to Local Anesthetics in Supraclavicular Brachial Plexus Block: A Randomized Controlled Trial. Anesth. Analg. 2015;121:1655–1660. doi: 10.1213/ANE.0000000000001006.
    1. Dutta A., Sethi N., Sood J., Panday B.C., Gupta M., Choudhary P., Puri G.D. The Effect of Dexmedetomidine on Propofol Requirements During Anesthesia Administered by Bispectral Index-Guided Closed-Loop Anesthesia Delivery System: A Randomized Controlled Study. Anesth. Analg. 2019;129:84–91. doi: 10.1213/ANE.0000000000003470.
    1. Wu X., Hang L.H., Wang H., Shao D.H., Xu Y.G., Cui W., Chen Z. Intranasally Administered Adjunctive Dexmedetomidine Reduces Perioperative Anesthetic Requirements in General Anesthesia. Yonsei Med. J. 2016;57:998–1005. doi: 10.3349/ymj.2016.57.4.998.
    1. Nagoshi M., Reddy S., Bell M., Cresencia A., Margolis R., Wetzel R., Ross P. Low-dose dexmedetomidine as an adjuvant to propofol infusion for children in MRI: A double-cohort study. Paediatr. Anaesth. 2018;28:639–646. doi: 10.1111/pan.13400.
    1. Di M., Yang Z., Qi D., Lai H., Wu J., Liu H., Ye X., ShangGuan W., Lian Q., Li J. Intravenous dexmedetomidine pre-medication reduces the required minimum alveolar concentration of sevoflurane for smooth tracheal extubation in anesthetized children: A randomized clinical trial. BMC Anesthesiol. 2018;18:9. doi: 10.1186/s12871-018-0469-9.
    1. Zhang X., Wu J., Wang L., Li W. Dexmedetomidine facilitates extubation in children who require intubation and respiratory support after airway foreign body retrieval: A case-cohort analysis of 57 cases. J. Anesth. 2018;32:592–598. doi: 10.1007/s00540-018-2519-3.
    1. Wang F., Zhong H., Xie X., Sha W., Li C., Li Z., Huang Z., Chen C. Effect of intratracheal dexmedetomidine administration on recovery from general anaesthesia after gynaecological laparoscopic surgery: A randomised double-blinded study. BMJ Open. 2018;8:e020614. doi: 10.1136/bmjopen-2017-020614.
    1. Tsiotou A.G., Malisiova A., Kouptsova E., Mavri M., Anagnostopoulou M., Kalliardou E. Dexmedetomidine for the reduction of emergence delirium in children undergoing tonsillectomy with propofol anesthesia: A double-blind, randomized study. Paediatr. Anaesth. 2018;28:632–638. doi: 10.1111/pan.13397.
    1. Kim H.S., Byon H.J., Kim J.E., Park Y.H., Lee J.H., Kim J.T. Appropriate dose of dexmedetomidine for the prevention of emergence agitation after desflurane anesthesia for tonsillectomy or adenoidectomy in children: Up and down sequential allocation. BMC Anesthesiol. 2015;15:79. doi: 10.1186/s12871-015-0059-z.
    1. Hauber J.A., Davis P.J., Bendel L.P., Martyn S.V., McCarthy D.L., Evans M.C., Cladis F.P., Cunningham S., Lang R.S., Campbell N.F., et al. Dexmedetomidine as a Rapid Bolus for Treatment and Prophylactic Prevention of Emergence Agitation in Anesthetized Children. Anesth. Analg. 2015;121:1308–1315. doi: 10.1213/ANE.0000000000000931.
    1. Keles S., Kocaturk O. The Effect of Oral Dexmedetomidine Premedication on Preoperative Cooperation and Emergence Delirium in Children Undergoing Dental Procedures. BioMed Res. Int. 2017;2017:6742183. doi: 10.1155/2017/6742183.
    1. Trivedi S., Kumar R., Tripathi A.K., Mehta R.K. A Comparative Study of Dexmedetomidine and Midazolam in Reducing Delirium Caused by Ketamine. J. Clin. Diagn. Res. 2016;10:Uc01–Uc04. doi: 10.7860/JCDR/2016/18397.8225.
    1. Song Y., Shim J.K., Song J.W., Kim E.K., Kwak Y.L. Dexmedetomidine added to an opioid-based analgesic regimen for the prevention of postoperative nausea and vomiting in highly susceptible patients: A randomised controlled trial. Eur. J. Anaesthesiol. 2016;33:75–83. doi: 10.1097/EJA.0000000000000327.
    1. Chrysostomou C., Schulman S.R., Herrera Castellanos M., Cofer B.E., Mitra S., da Rocha M.G., Wisemandle W.A., Gramlich L. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J. Pediatrics. 2014;164:276–282.e1-3. doi: 10.1016/j.jpeds.2013.10.002.
    1. Franciscovich C.D., Monk H.M., Brodecki D., Rogers R., Rintoul N.E., Hedrick H.L., Ely E. Sedation Practices of Neonates Receiving Extracorporeal Membrane Oxygenation. ASAIO J. 2020;66:559–564. doi: 10.1097/MAT.0000000000001043.
    1. Sperotto F., Mondardini M.C., Vitale F., Daverio M., Campagnano E., Ferrero F., Rossetti E., Vasile B., Dusio M.P., Ferrario S., et al. Prolonged sedation in critically ill children: Is dexmedetomidine a safe option for younger age? An off-label experience. Minerva Anestesiol. 2019;85:164–172. doi: 10.23736/S0375-9393.18.13062-8.
    1. Dersch-Mills D.A., Banasch H.L., Yusuf K., Howlett A. Dexmedetomidine Use in a Tertiary Care NICU: A Descriptive Study. Ann. Pharmacother. 2019;53:464–470. doi: 10.1177/1060028018812089.
    1. Puthoff T.D., Shah H., Slaughter J.L., Bapat R. Reduction of Analgesia Duration after Tracheostomy during Neonatal Intensive Care: A Quality Initiative. Pediatr. Qual. Saf. 2018;3:e106. doi: 10.1097/pq9.0000000000000106.
    1. Weatherall M., Aantaa R., Conti G., Garratt C., Pohjanjousi P., Lewis M.A., Moore N., Perez-Gutthann S. A multinational, drug utilization study to investigate the use of dexmedetomidine (Dexdor(R)) in clinical practice in the EU. Br. J. Clin. Pharmacol. 2017;83:2066–2076. doi: 10.1111/bcp.13293.
    1. Grant M.J., Schneider J.B., Asaro L.A., Dodson B.L., Hall B.A., Simone S.L., Cowl A.S., Munkwitz M.M., Wypij D., Curley M.A. Dexmedetomidine Use in Critically Ill Children With Acute Respiratory Failure. Pediatr. Crit. Care Med. 2016;17:1131–1141. doi: 10.1097/PCC.0000000000000941.
    1. Piastra M., Pizza A., Gaddi S., Luca E., Genovese O., Picconi E., De Luca D., Conti G. Dexmedetomidine is effective and safe during NIV in infants and young children with acute respiratory failure. BMC Pediatr. 2018;18:282. doi: 10.1186/s12887-018-1256-y.
    1. Ghimire L.V., Chou F.S. Efficacy of prophylactic dexmedetomidine in preventing postoperative junctional ectopic tachycardia in pediatric cardiac surgery patients: A systematic review and meta-analysis. Paediatr. Anaesth. 2018;28:597–606. doi: 10.1111/pan.13405.
    1. Flores-Gonzalez J.C., Estalella-Mendoza A., Lechuga-Sancho A.M., Hernandez-Gonzalez A., Rubio-Quinones F., Rodriguez-Campoy P., Saldana-Valderas M. Supraventricular tachycardia after withdrawal of prolonged dexmedetomidine infusion in a paediatric patient without heart disease. J. Clin. Pharm. Ther. 2017;42:653–655. doi: 10.1111/jcpt.12564.
    1. Burns J., Jackson K., Sheehy K.A., Finkel J.C., Quezado Z.M. The Use of Dexmedetomidine in Pediatric Palliative Care: A Preliminary Study. J. Palliat. Med. 2017;20:779–783. doi: 10.1089/jpm.2016.0419.
    1. De Zen L., Marchetti F., Barbi E., Benini F. Off-label drugs use in pediatric palliative care. Ital. J. Pediatr. 2018;44:144. doi: 10.1186/s13052-018-0584-8.
    1. De Zen L.D.R., I, Robazza M., Barbieri F., Campagna M., Vaccher S., Barbi E., Dall′Amico R. Home intranasal dexmedetomidine in a child with an intractable sleep disorder. J. Pediatr. Pharmacol. Ther. 2020;25:332–335. doi: 10.5863/1551-6776-25.4.332.
    1. De Zen L., Della Paolera S., Del Rizzo I., Taucar V., Skabar A., Barbi E. Home Intranasal Dexmedetomidine for Refractory Dystonia in Pediatric Palliative Care. J. Pain Symptom Manag. 2020 doi: 10.1016/j.jpainsymman.2020.02.022.
    1. Li B.L., Yuen V.M., Zhang N., Zhang H.H., Huang J.X., Yang S.Y., Miller J.W., Song X.R. A Comparison of Intranasal Dexmedetomidine and Dexmedetomidine Plus Buccal Midazolam for Non-painful Procedural Sedation in Children with Autism. J. Autism Dev. Disord. 2019;49:3798–3806. doi: 10.1007/s10803-019-04095-w.
    1. Carlone G., Trombetta A., Amoroso S., Poropat F., Barbi E., Cozzi G. Intramuscular Dexmedetomidine, a Feasible Option for Children With Autism Spectrum Disorders Needing Urgent Procedural Sedation. Pediatr. Emerg. Care. 2019 doi: 10.1097/PEC.0000000000001776.
    1. Lubisch N., Roskos R., Berkenbosch J.W. Dexmedetomidine for procedural sedation in children with autism and other behavior disorders. Pediatr. Neurol. 2009;41:88–94. doi: 10.1016/j.pediatrneurol.2009.02.006.
    1. Abulebda K., Louer R., Lutfi R., Ahmed S.S. A Comparison of Safety and Efficacy of Dexmedetomidine and Propofol in Children with Autism and Autism Spectrum Disorders Undergoing Magnetic Resonance Imaging. J. Autism Dev. Disord. 2018;48:3127–3132. doi: 10.1007/s10803-018-3582-1.
    1. Stuker E.W., Eskander J.P., Gennuso S.A. Third time’s a charm: Oral midazolam vs intranasal dexmedetomidine for preoperative anxiolysis in an autistic pediatric patient. Paediatr. Anaesth. 2018;28:370–371. doi: 10.1111/pan.13335.
    1. Mason K.P., Lubisch N., Robinson F., Roskos R., Epstein M.A. Intramuscular dexmedetomidine: An effective route of sedation preserves background activity for pediatric electroencephalograms. J. Pediatr. 2012;161:927–932. doi: 10.1016/j.jpeds.2012.05.011.

Source: PubMed

3
Abonnieren