Validation of a multiplex reverse transcription and pre-amplification method using TaqMan(®) MicroRNA assays

Joane Le Carré, Séverine Lamon, Bertrand Léger, Joane Le Carré, Séverine Lamon, Bertrand Léger

Abstract

Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan(®) technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel.

Keywords: human skeletal muscle; miRNA; multiplexing; plasma; qRT-PCR.

Figures

FIGURE 1
FIGURE 1
Method design.
FIGURE 2
FIGURE 2
(A) Standard curves from 11 miRNAs expressed in human muscle tissue. (B) Standard curves from eight microRNAs (miRNAs) expressed in human plasma samples.

References

    1. Aoi W., Ichikawa H., Mune K., Tanimura Y., Mizushima K., Naito Y., et al. (2013). Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front. Physiol. 4:80 10.3389/fphys.2013.00080
    1. Baggish A. L., Hale A., Weiner R. B., Lewis G. D., Systrom D., Wang F., et al. (2011). Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 589 3983–3994 10.1113/jphysiol.2011.213363.
    1. Bartel D. P., Lee R., Feinbaum R. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function Genomics: the miRNA Genes. Cell 116 281–297 10.1016/S0092-8674(04)00045-5
    1. Buckingham M., Rigby P. W. J. (2014). Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 28 225–238 10.1016/j.devcel.2013.12.020
    1. Bueno M. J., de Castro I. P., Malumbres M. (2008). Control of cell proliferation pathways by microRNAs. Cell Cycle 7 3143–3148 10.4161/cc.7.20.6833
    1. Bye A., Rø sjø H., Aspenes S. T., Condorelli G., Omland T., Wisløff U. (2013). Circulating microRNAs and aerobic fitness–the HUNT-Study. PLoS ONE 8:e57496 10.1371/journal.pone.0057496
    1. Caporali A., Emanueli C. (2011). MicroRNA regulation in angiogenesis. Vascul. Pharmacol. 55 79–86 10.1016/j.vph.2011.06.006
    1. Chan S. Y., Zhang Y.-Y., Hemann C., Mahoney C. E., Zweier J. L., Loscalzo J. (2009). MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 10 273–284 10.1016/j.cmet.2009.08.015
    1. Chen C., Ridzon D. A., Broomer A. J., Zhou Z., Lee D. H., Nguyen J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e179 10.1093/nar/gni178
    1. Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18 997–1006 10.1038/cr.2008.282
    1. Dai R., Ahmed S. A. (2011). MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 157 163–179 10.1016/j.trsl.2011.01.007
    1. Davidsen P. K., Gallagher I. J., Hartman J. W., Tarnopolsky M. A., Dela F., Helge J. W., et al. (2011). High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J. Appl. Physiol. (1985) 110 309–17 10.1152/japplphysiol.00901.2010
    1. Faiss R., Léger B., Vesin J.-M., Fournier P.-E., Eggel Y., Dériaz O., et al. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE 8:e56522 10.1371/journal.pone.0056522
    1. Gidron Y., Zwaan M., De Quint K., Ocker M. (2010). Influence of stress and health-behaviour on miRNA expression. Mol. Med. Rep. 3 455–457 10.3892/mmr
    1. Krol J., Loedige I., Filipowicz W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11 597–610 10.1038/nrg2843
    1. Lao K., Xu N. L., Yeung V., Chen C., Livak K. J., Straus N. A. (2006). Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem. Biophys. Res. Commun. 343 85–89 10.1016/j.bbrc.2006.02.106
    1. Lawrie C. H., Saunders N. J., Soneji S., Palazzo S., Dunlop H. M., Cooper C. D. O., et al. (2008). MicroRNA expression in lymphocyte development and malignancy. Leukemia 22 1440–1446 10.1038/sj.leu.2405083
    1. Léger B., Cartoni R., Praz M., Lamon S., Dériaz O., Crettenand A., et al. (2006). Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J. Physiol. 576 923–933 10.1113/jphysiol.2006.116715
    1. Lim L. P., Lau N. C., Garrett-Engele P., Grimson A., Schelter J. M., Castle J., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433 769–73 10.1038/nature03315
    1. Mei Q., Li X., Meng Y., Wu Z., Guo M., Zhao Y., et al. (2012). A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS ONE 7:e46890 10.1371/journal.pone.0046890
    1. Mitchell P. S., Parkin R. K., Kroh E. M., Fritz B. R., Wyman S. K., Pogosova-Agadjanyan E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U.S.A. 105 10513–10518 10.1073/pnas.0804549105
    1. Nielsen S., Åkerström T., Rinnov A., Yfanti C., Scheele C., Pedersen B. K., et al. (2014). The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 9:e87308 10.1371/journal.pone.0087308
    1. Protocol for Creating Custom RT and Preamplification Pools using TaqMan® MicroRNA Assays User Bulletin (Pub. no. 4465407 Rev. C) – cms_094060. pdf (2014). Available at: [accessed September 1, 2014].
    1. Rasheed S. A. K., Teo C. R., Beillard E. J., Voorhoeve P. M., Casey P. J. (2013). MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J. Biol. Chem. 288 7986–95 10.1074/jbc.M112.437749.
    1. Sood P., Krek A., Zavolan M., Macino G., Rajewsky N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. U.S.A. 103 2746–2751 10.1073/pnas.0511045103
    1. Subramanian S., Steer C. J. (2010). MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223 289–98 10.1002/jcp.22066
    1. Wang J., Cui Q. (2012). Specific roles of microRNAs in their interactions with environmental factors. J. Nucleic Acids 2012:978384 10.1155/2012/978384
    1. Zacharewicz E., Lamon S., Russell A. P. (2013). MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front. Physiol. 4:266 10.3389/fphys.2013.00266
    1. Zampetaki A., Willeit P., Drozdov I., Kiechl S., Mayr M. (2012a). Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc. Res. 93 555–562 10.1093/cvr/cvr266
    1. Zampetaki A., Willeit P., Tilling L., Drozdov I., Prokopi M., Renard J.-M., et al. (2012b). Prospective study on circulating microRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol. 60 290–9 10.1016/j.jacc.2012.03.056

Source: PubMed

3
Abonnieren