Impact of Diabetes Mellitus on Ventricular Structure, Arterial Stiffness, and Pulsatile Hemodynamics in Heart Failure With Preserved Ejection Fraction

Julio A Chirinos, Priyanka Bhattacharya, Anupam Kumar, Elizabeth Proto, Prasad Konda, Patrick Segers, Scott R Akers, Raymond R Townsend, Payman Zamani, Julio A Chirinos, Priyanka Bhattacharya, Anupam Kumar, Elizabeth Proto, Prasad Konda, Patrick Segers, Scott R Akers, Raymond R Townsend, Payman Zamani

Abstract

Background Heterogeneity in the underlying processes that contribute to heart failure with preserved ejection fraction ( HF p EF ) is increasingly recognized. Diabetes mellitus is a frequent comorbidity in HF p EF , but its impact on left ventricular and arterial structure and function in HF p EF is unknown. Methods and Results We assessed the impact of diabetes mellitus on left ventricular cellular and interstitial hypertrophy (assessed with cardiac magnetic resonance imaging, including T1 mapping pregadolinium and postgadolinium administration), arterial stiffness (assessed with arterial tonometry), and pulsatile arterial hemodynamics (assessed with in-office pressure-flow analyses and 24-hour ambulatory monitoring) among 53 subjects with HF p EF (32 diabetic and 21 nondiabetic subjects). Despite few differences in clinical characteristics, diabetic subjects with HFpEF exhibited a markedly greater left ventricular mass index (78.1 [95% CI , 70.4-85.9] g versus 63.6 [95% CI , 55.8-71.3] g; P=0.0093) and indexed extracellular volume (23.6 [95% CI , 21.2-26.1] mL/m2 versus 16.2 [95% CI , 13.1-19.4] mL/m2; P=0.0008). Pronounced aortic stiffening was also observed in the diabetic group (carotid-femoral pulse wave velocity, 11.86 [95% CI , 10.4-13.1] m/s versus 8.8 [95% CI , 7.5-10.1] m/s; P=0.0027), with an adverse pulsatile hemodynamic profile characterized by increased oscillatory power (315 [95% CI , 258-373] mW versus 190 [95% CI , 144-236] mW; P=0.0007), aortic characteristic impedance (0.154 [95% CI , 0.124-0.183] mm Hg/mL per second versus 0.096 [95% CI , 0.072-0.121] mm Hg/mL per second; P=0.0024), and forward (59.5 [95% CI , 52.8-66.1] mm Hg versus 40.1 [95% CI , 31.6-48.6] mm Hg; P=0.0010) and backward (19.6 [95% CI , 16.2-22.9] mm Hg versus 14.1 [95% CI , 10.9-17.3] mm Hg; P=0.0169) wave amplitude. Abnormal pulsatile hemodynamics were also evident in 24-hour ambulatory monitoring, despite the absence of significant differences in 24-hour systolic blood pressure between the groups. Conclusions Diabetes mellitus is a key determinant of left ventricular remodeling, arterial stiffness, adverse pulsatile hemodynamics, and ventricular-arterial interactions in HF p EF . Clinical Trial Registration URL : https://www.clinicaltrials.gov . Unique identifier: NCT 01516346.

Trial registration: ClinicalTrials.gov NCT01516346.

Keywords: arterial stiffness; diabetes mellitus; heart failure with preserved ejection fraction; hemodynamics; left ventricular hypertrophy; magnetic resonance imaging; myocardial fibrosis.

Figures

Figure 1
Figure 1
Measurement and signal averaging of central pressure and flow using arterial tonometry and Doppler echocardiography.
Figure 2
Figure 2
Quantification of the aortic input impedance spectrum, aortic characteristic impedance, and wave separation analysis. Pb indicates backward pressure; Pf, forward pressure; Zin, input impedance.
Figure 3
Figure 3
Assessment of ambulatory central blood pressure and pulsatile hemodynamics.
Figure 4
Figure 4
Comparison of key cardiovascular parameters of left ventricular (LV) hypertrophy and cellular and interstitial expansion between diabetic and nondiabetic subjects. DM indicates diabetes mellitus.
Figure 5
Figure 5
Differences in aortic pulsatile hemodynamics assessed via pressure‐flow analyses, between diabetic and nondiabetic subjects. DM indicates diabetes mellitus; PP, pulse pressure; PWV, pulse wave velocity; Zc, characteristic impedance.
Figure 6
Figure 6
Differences in ambulatory blood pressure (BP) and pulsatile hemodynamics between diabetic and nondiabetic subjects. All units are in mm Hg. DBP indicates diastolic BP; DM, diabetes mellitus; PP, pulse pressure; SBP, systolic BP.

References

    1. Lam CS, Donal E, Kraigher‐Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:18–28.
    1. Sandesara PB, O'Neal WT, Kelli HM, Samman‐Tahhan A, Hammadah M, Quyyumi AA, Sperling LS. The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction. Diabetes Care. 2018;41:150–155.
    1. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, Heffernan KS, Lakatta EG, McEniery CM, Mitchell GF, Najjar SS, Nichols WW, Urbina EM, Weber T; American Heart Association Council on Hypertension . Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698–722.
    1. Loehr LR, Meyer ML, Poon AK, Selvin E, Palta P, Tanaka H, Pankow JS, Wright JD, Griswold ME, Wagenknecht LE, Heiss G. Prediabetes and diabetes are associated with arterial stiffness in older adults: the ARIC study. Am J Hypertens. 2016;29:1038–1045.
    1. Chirinos JA, Segers P, Gillebert TC, De Buyzere ML, Van Daele CM, Khan ZA, Khawar U, De Bacquer D, Rietzschel ER, Asklepios I. Central pulse pressure and its hemodynamic determinants in middle‐aged adults with impaired fasting glucose and diabetes: the Asklepios study. Diabetes Care. 2013;36:2359–2365.
    1. Prenner SB, Chirinos JA. Arterial stiffness in diabetes mellitus. Atherosclerosis. 2015;238:370–379.
    1. Shah AM, Hung CL, Shin SH, Skali H, Verma A, Ghali JK, Kober L, Velazquez EJ, Rouleau JL, McMurray JJ, Pfeffer MA, Solomon SD. Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both. Am Heart J. 2011;162:685–691.
    1. Townsend RR, Chirinos JA, Parsa A, Weir MA, Sozio SM, Lash JP, Chen J, Steigerwalt SP, Go AS, Hsu CY, Rafey M, Wright JT Jr, Duckworth MJ, Gadegbeku CA, Joffe MP; Chronic Renal Insufficiency Cohort Investigators . Central pulse pressure in chronic kidney disease: a chronic renal insufficiency cohort ancillary study. Hypertension. 2010;56:518–524.
    1. Townsend RR, Wimmer NJ, Chirinos JA, Parsa A, Weir M, Perumal K, Lash JP, Chen J, Steigerwalt SP, Flack J, Go AS, Rafey M, Rahman M, Sheridan A, Gadegbeku CA, Robinson NA, Joffe M. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens. 2010;23:282–289.
    1. Lehrke M, Marx N. Diabetes mellitus and heart failure. Am J Med. 2017;130:S40–S50.
    1. Chirinos JA, Rietzschel ER, De Buyzere ML, De Bacquer D, Gillebert TC, Gupta AK, Segers P; Asklepios investigators . Arterial load and ventricular‐arterial coupling: physiologic relations with body size and effect of obesity. Hypertension. 2009;54:558–566.
    1. Townsend RR, Black HR, Chirinos JA, Feig PU, Ferdinand KC, Germain M, Rosendorff C, Steigerwalt SP, Stepanek JA. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American Artery. J Clin Hypertens (Greenwich). 2015;17:503–513.
    1. Mohammed SF, Borlaug BA, Roger VL, Mirzoyev SA, Rodeheffer RJ, Chirinos JA, Redfield MM. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction: a community‐based study. Circ Heart Fail. 2012;5:710–719.
    1. Chirinos JA, Sweitzer N. Ventricular‐arterial coupling in chronic heart failure. Card Fail Rev. 2017;3:12–18.
    1. Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;39:3847–3854.
    1. Chirinos JA, Akers SR, Trieu L, Ischiropoulos H, Doulias PT, Tariq A, Vassim I, Koppula MR, Syed AA, Soto‐Calderon H, Townsend RR, Cappola TP, Margulies KB, Zamani P. Heart failure, left ventricular remodeling, and circulating nitric oxide metabolites. J Am Heart Assoc. 2016;5:e004133 DOI: 10.1161/JAHA.116.004133.
    1. Chirinos JA. Ventricular‐arterial coupling: invasive and non‐invasive assessment. Artery Res. 2013;7:2–14.
    1. Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA, Fang JC, Sweitzer NK, Borlaug BA, Kass DA, St John Sutton M, Cappola TP. Ventricular‐arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol. 2013;62:1165–1172.
    1. Chirinos JA. Deep phenotyping of systemic arterial hemodynamics in HFpEF (part 1): physiologic and technical considerations. J Cardiovasc Transl Res. 2017;10:260.
    1. Chirinos JA. Deep phenotyping of systemic arterial hemodynamics in HFpEF (part 2): clinical and therapeutic considerations. J Cardiovasc Transl Res. 2017;10:261–274.
    1. Zamani P, Akers S, Soto‐Calderon H, Beraun M, Koppula MR, Varakantam S, Rawat D, Shiva‐Kumar P, Haines PG, Chittams J, Townsend RR, Witschey WR, Segers P, Chirinos JA. Isosorbide dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6:e004262 DOI: 10.1161/JAHA.116.004262.
    1. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–133.
    1. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure‐flow and pressure‐volume relations in humans. Hypertension. 2010;56:563–570.
    1. Hametner B, Wassertheurer S, Kropf J, Mayer C, Holzinger A, Eber B, Weber T. Wave reflection quantification based on pressure waveforms alone—methods, comparison, and clinical covariates. Comput Methods Programs Biomed. 2013;109:250–259.
    1. Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, Hametner B, Mayer CC, Eber B, Magometschnigg D. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498–504.
    1. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, Kropf J, Eber B. Validation of a brachial cuff‐based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–832.
    1. Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, Claessens T, Gillebert TC, St John‐Sutton M, Rietzschel ER. Left ventricular mass: allometric scaling, normative values, effect of obesity, and prognostic performance. Hypertension. 2010;56:91–98.
    1. Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz‐Menger J. Optimization and validation of a fully‐integrated pulse sequence for modified look‐locker inversion‐recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081–1086.
    1. Liu CY, Liu YC, Wu C, Armstrong A, Volpe GJ, van der Geest RJ, Liu Y, Hundley WG, Gomes AS, Liu S, Nacif M, Bluemke DA, Lima JA. Evaluation of age‐related interstitial myocardial fibrosis with cardiac magnetic resonance contrast‐enhanced T1 mapping: MESA (Multi‐Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;62:1280–1287.
    1. McDiarmid AK, Swoboda PP, Erhayiem B, Lancaster RE, Lyall GK, Broadbent DA, Dobson LE, Musa TA, Ripley DP, Garg P, Greenwood JP, Ferguson C, Plein S. Athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging. 2016;9:e003579.
    1. Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, Herrington DM, Link KM, Little WC. Cardiac cycle‐dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38:796–802.
    1. Weber T, Wassertheurer S, O'Rourke MF, Haiden A, Zweiker R, Rammer M, Hametner B, Eber B. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–1883.
    1. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54:1328–1336.
    1. Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn RR. Relation between complications of type I diabetes mellitus and collagen‐linked fluorescence. N Engl J Med. 1986;314:403–408.
    1. Towler DA. Arteriosclerotic calcification: a serpi(n)ginous path to cardiovascular health? Circ Res. 2015;117:744–746.
    1. Brillante DG, O'Sullivan AJ, Johnstone MT, Howes LG. Arterial stiffness and haemodynamic response to vasoactive medication in subjects with insulin‐resistance syndrome. Clin Sci (Lond). 2008;114:139–147.
    1. Weber T. Arterial stiffness, wave reflections, and diabetes: a bidirectional relationship? Am J Hypertens. 2010;23:1047–1048.
    1. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes‐induced arterial wall protein cross‐linking. Science. 1986;232:1629–1632.
    1. Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation—a mini‐review. Gerontology. 2012;58:227–237.
    1. Sardana M, Vasim I, Varakantam S, Kewan U, Tariq A, Koppula MR, Syed AA, Beraun M, Drummen NE, Vermeer C, Akers SR, Chirinos JA. Inactive matrix Gla‐protein and arterial stiffness in type 2 diabetes mellitus. Am J Hypertens. 2017;30:196–201.
    1. Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Bostrom KI. A role for the endothelium in vascular calcification. Circ Res. 2013;113:495–504.
    1. Hoffman JI, Buckberg GD. The myocardial oxygen supply: demand index revisited. J Am Heart Assoc. 2014;3:e000285 DOI: 10.1161/JAHA.113.000285.
    1. Chirinos JA. Deciphering systolic‐diastolic coupling in the intact heart. Hypertension. 2017;69:575–577.
    1. Cardoso CR, Ferreira MT, Leite NC, Barros PN, Conte PH, Salles GF. Microvascular degenerative complications are associated with increased aortic stiffness in type 2 diabetic patients. Atherosclerosis. 2009;205:472–476.
    1. Kim WJ, Park CY, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Kim SW, Song S. The association between regional arterial stiffness and diabetic retinopathy in type 2 diabetes. Atherosclerosis. 2012;225:237–241.
    1. Smith A, Karalliedde J, De Angelis L, Goldsmith D, Viberti G. Aortic pulse wave velocity and albuminuria in patients with type 2 diabetes. J Am Soc Nephrol. 2005;16:1069–1075.
    1. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–562.
    1. Somes GW, Pahor M, Shorr RI, Cushman WC, Applegate WB. The role of diastolic blood pressure when treating isolated systolic hypertension. Arch Intern Med. 1999;159:2004–2009.
    1. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Perez G, Mendez AJ. Relation between ascending aortic pressures and outcomes in patients with angiographically demonstrated coronary artery disease. Am J Cardiol. 2005;96:645–648.
    1. Selvaraj S, Claggett B, Shah SJ, Anand I, Rouleau JL, Desai AS, Lewis EF, Pitt B, Sweitzer NK, Pfeffer MA, Solomon SD. Systolic blood pressure and cardiovascular outcomes in heart failure with preserved ejection fraction: an analysis of the TOPCAT trial. Eur J Heart Fail. 2018;20:483–490.
    1. Tsujimoto T, Kajio H. Low diastolic blood pressure and adverse outcomes in heart failure with preserved ejection fraction. Int J Cardiol. 2018;263:69–74.
    1. Teng TK, Tay WT, Dahlstrom U, Benson L, Lam CSP, Lund LH. Different relationships between pulse pressure and mortality in heart failure with reduced, mid‐range and preserved ejection fraction. Int J Cardiol. 2018;254:203–209.
    1. Muhammad IF, Borne Y, Ostling G, Kennback C, Gottsater M, Persson M, Nilsson PM, Engstrom G. Arterial stiffness and incidence of diabetes: a population‐based cohort study. Diabetes Care. 2017;40:1739–1745.
    1. Chirinos JA, Phan TS, Syed AA, Hashmath Z, Oldland HG, Koppula MR, Tariq A, Javaid K, Miller R, Varakantam S, Dunde A, Neetha V, Akers SR. Late systolic myocardial loading is associated with left atrial dysfunction in hypertension. Circ Cardiovasc Imaging. 2017;10:e006023.
    1. Chirinos JA, Segers P, Gupta AK, Swillens A, Rietzschel ER, De Buyzere ML, Kirkpatrick JN, Gillebert TC, Wang Y, Keane MG, Townsend R, Ferrari VA, Wiegers SE, St John Sutton M. Time‐varying myocardial stress and systolic pressure‐stress relationship: role in myocardial‐arterial coupling in hypertension. Circulation. 2009;119:2798–2807.
    1. Chirinos JA, Segers P, Raina A, Saif H, Swillens A, Gupta AK, Townsend R, Emmi AG Jr, Kirkpatrick JN, Keane MG, Ferrari VA, Wiegers SE, St John Sutton MG. Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension. Am J Physiol Heart Circ Physiol. 2010;298:H320–H330.
    1. Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, St John‐Sutton M, Rietzschel ER, Asklepios I. Arterial properties as determinants of time‐varying myocardial stress in humans. Hypertension. 2012;60:64–70.
    1. Al‐Badri A, Hashmath Z, Oldland GH, Miller R, Javaid K, Syed AA, Ansari B, Gaddam S, Witschey WR, Akers SR, Chirinos JA. Poor glycemic control is associated with increased extracellular volume fraction in diabetes. Diabetes Care. 2018;41:2019–2025.

Source: PubMed

3
Abonnieren