Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions

Elena Spinelli, Tommaso Mauri, Alberto Fogagnolo, Gaetano Scaramuzzo, Annalisa Rundo, Domenico Luca Grieco, Giacomo Grasselli, Carlo Alberto Volta, Savino Spadaro, Elena Spinelli, Tommaso Mauri, Alberto Fogagnolo, Gaetano Scaramuzzo, Annalisa Rundo, Domenico Luca Grieco, Giacomo Grasselli, Carlo Alberto Volta, Savino Spadaro

Abstract

Background: Electrical impedance tomography (EIT) is a non-invasive radiation-free monitoring technique that provides images based on tissue electrical conductivity of the chest. Several investigations applied EIT in the context of perioperative medicine, which is not confined to the intraoperative period but begins with the preoperative assessment and extends to postoperative follow-up.

Main body: EIT could provide careful respiratory monitoring in the preoperative assessment to improve preparation for surgery, during anaesthesia to guide optimal ventilation strategies and to monitor the hemodynamic status and in the postoperative period for early detection of respiratory complications. Moreover, EIT could further enhance care of patients undergoing perioperative diagnostic procedures. This narrative review summarizes the latest evidence on the application of this technique to the surgical patient, focusing also on possible future perspectives.

Conclusions: EIT is a promising technique for the perioperative assessment of surgical patients, providing tailored adaptive respiratory and haemodynamic monitoring. Further studies are needed to address the current technological limitations, confirm the findings and evaluate which patients can benefit more from this technology.

Keywords: Electrical impedance tomography; Hemodynamic monitoring; Non-operating room anaesthesia; Perioperative medicine.

Conflict of interest statement

GG received a payment for lectures from Getinge, Draeger Medical, Pfizer, Fisher & Paykel; received a payment for travel/accommodation/congress registration support from Getinge and Biotest. TM receiving speaking fees from Draeger outside of the present work. SS received a payment for travel/accommodation/congress registration support from Getinge. The other authors declare no conflicts of interests.

Figures

Fig. 1
Fig. 1
End expiratory lung impedance change during anesthesia induction. Evaluation of End-Expiratory Lung Impedance (EELI, continuous blue line) and End Inspiratory Lung Impedance (EILI, blue dots, non-continuous blue line) during different moments of general anesthesia induction in a 65 years old patient undergoing laparoscopic cholecystectomy. Note decrease of TV and EELV during anesthesia induction and increase in EELV during mask ventilation with PEEP. Finally, stable ventilation and EELV were reached after intubation and start of control mechanical ventilation
Fig. 2
Fig. 2
Tidal volume distribution during spontaneous breathing (a) and mechanical ventilation (b). Tidal image (top) and relative stretch distribution (bottom) during spontaneous breathing (a) and after intubation and start of controlled mechanical ventilation (b) in the same patient undergoing general anesthesia. During mechanical ventilation, tidal volume is redistributed toward the ventral lung; moreover, hypoventilated areas increase, as shown by the relative stretch histogram (lower values indicate smaller regional tidal volume)
Fig. 3
Fig. 3
Electrical impedance tomography (EIT) image acquired during a non-bronchoscopic bronchoalveolar lavage (blindBAL) performed in the dorsal lung. (Grieco et al., Intensive Care Med (2016) 42: 1088)

References

    1. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Bayford R, Tizzard A. Bioimpedance imaging: an overview of potential clinical applications. Analyst. 2012;137:4635–4643. doi: 10.1039/c2an35874c.
    1. Lionheart WRB. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas. 2004;25:125–142. doi: 10.1088/0967-3334/25/1/021.
    1. Fuks LF, Cheney M, Isaacson D, Gisser DG, Newell JC. Detection and imaging of electric conductivity and permittivity at low frequency. IEEE Trans Biomed Eng. 1991;38:1106–1110. doi: 10.1109/10.99074.
    1. Hahn G, Sipinková I, Baisch F, Hellige G. Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas. 1995;16(3):A161–A173. doi: 10.1088/0967-3334/16/3A/016.
    1. Murphy EK, Mahara A, Wu X, Halter RJ. Phantom experiments using soft-prior regularization EIT for breast cancer imaging. Physiol Meas. 2017;38:1262–1277. doi: 10.1088/1361-6579/aa691b.
    1. Murphy EK, Mahara A, Halter RJ. Absolute reconstructions using rotational electrical impedance tomography for breast Cancer imaging. IEEE Trans Med Imaging. 2017;36:892–903. doi: 10.1109/TMI.2016.2640944.
    1. Nissinen A, Kaipio JP, Vauhkonen M, Kolehmainen V. Contrast enhancement in EIT imaging of the brain. Physiol Meas. 2016;37:1–24. doi: 10.1088/0967-3334/37/1/1.
    1. Lionheart WRL, Polydorides N, Borsic A. Electrical Impedance Tomography: Methods, History and Applications p3-64, Editor David Holder Institute of Physics Publishing, 2004. ISBN 0750309520.
    1. de Munck JC, Faes TJ, Heethaar RM. The boundary element method in the forward and inverse problem of electrical impedance tomography. IEEE Trans Biomed Eng. 2000;47:792–800. doi: 10.1109/10.844230.
    1. Zhao Z, Frerichs I, Pulletz S, Müller-Lisse U, Möller K. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation. Physiol Meas. 2014;35:1083–1093. doi: 10.1088/0967-3334/35/6/1083.
    1. Frerichs I, Zhao Z, Becher T, Zabel P, Weiler N, Vogt B. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016;37:698–712. doi: 10.1088/0967-3334/37/6/698.
    1. Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–1161. doi: 10.1152/japplphysiol.01630.2011.
    1. Vogt B, Zhao Z, Zabel P, Weiler N, Frerichs I. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311:L8–19. doi: 10.1152/ajplung.00463.2015.
    1. Spadaro S, Caramori G, Rizzuto C, Mojoli F, Zani G, Ragazzi R, et al. Expiratory flow limitation as a risk factor for pulmonary complications after major abdominal surgery. Anesth Analg. 2017;124:524–530. doi: 10.1213/ANE.0000000000001424.
    1. Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol. 2012;2:69–96.
    1. Grieco DL, Russo A, Romanò B, Anzellotti GM, Ciocchetti P, Torrini F, et al. Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia. Br J Anaesth. 2018;121:1156–1165. doi: 10.1016/j.bja.2018.03.022.
    1. Hedenstierna G, Tokics L, Scaramuzzo G, Rothen HU, Edmark L, Öhrvik J. Oxygenation impairment during anesthesia: influence of age and body weight. Anesthesiology. 2019;131:46–57. doi: 10.1097/ALN.0000000000002693.
    1. Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiology. 2018;128:531–538. doi: 10.1097/ALN.0000000000002011.
    1. Spadaro S, Karbing DS, Mauri T, Marangoni E, Mojoli F, Valpiani G, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116:855–861. doi: 10.1093/bja/aew123.
    1. Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? Crit Care. 2018;22:264. doi: 10.1186/s13054-018-2199-2.
    1. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–355. doi: 10.1164/rccm.200710-1589OC.
    1. Humphreys S, Pham TMT, Stocker C, Schibler A. The effect of induction of anesthesia and intubation on end-expiratory lung level and regional ventilation distribution in cardiac children. Paediatr Anaesth. 2011;21:887–893. doi: 10.1111/j.1460-9592.2011.03547.x.
    1. Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand. 2006;50:833–839. doi: 10.1111/j.1399-6576.2006.01079.x.
    1. Nestler C, Simon P, Petroff D, Hammermüller S, Kamrath D, Wolf S, et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–1205. doi: 10.1093/bja/aex192.
    1. Schaefer MS, Wania V, Bastin B, Schmalz U, Kienbaum P, Beiderlinden M, et al. Electrical impedance tomography during major open upper abdominal surgery: a pilot-study. BMC Anesthesiol. 2014;14:51. doi: 10.1186/1471-2253-14-51.
    1. Pereira SM, Tucci MR, Morais CCA, Simões CM, Tonelotto BFF, Pompeo MS, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018;129:1070–1081. doi: 10.1097/ALN.0000000000002435.
    1. Eronia N, Mauri T, Maffezzini E, Gatti S, Bronco A, Alban L, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care. 2017;7:76. doi: 10.1186/s13613-017-0299-9.
    1. Steinmann D, Stahl CA, Minner J, Schumann S, Loop T, Kirschbaum A, et al. Electrical impedance tomography to confirm correct placement of double-lumen tube: a feasibility study. Br J Anaesth. 2008;101:411–418. doi: 10.1093/bja/aen166.
    1. Zhao Z, Möller K, Steinmann D, Frerichs I, Guttmann J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 2009;35:1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Zhao Z, Wang W, Zhang Z, Xu M, Frerichs I, Wu J, et al. Influence of tidal volume and positive end-expiratory pressure on ventilation distribution and oxygenation during one-lung ventilation. Physiol Meas. 2018;39:034003. doi: 10.1088/1361-6579/aaaeb2.
    1. Spadaro S, Mauri T, Böhm SH, Scaramuzzo G, Turrini C, Waldmann AD, et al. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Crit Care. 2018;22:26. doi: 10.1186/s13054-017-1931-7.
    1. Karagiannidis C, Waldmann AD, Róka PL, Schreiber T, Strassmann S, Windisch W, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22:221. doi: 10.1186/s13054-018-2137-3.
    1. Junhasavasdikul D, Telias I, Grieco DL, Chen L, Gutierrez CM, Piraino T, et al. Expiratory flow limitation during mechanical ventilation. Chest. 2018;154:948–962. doi: 10.1016/j.chest.2018.01.046.
    1. Chen L, Del Sorbo L, Fan E, Brochard L. Reply to Koutsoukou: expiratory flow limitation and airway closure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2019;199:128–129. doi: 10.1164/rccm.201808-1504LE.
    1. Reinius H, Borges JB, Fredén F, Jideus L, Camargo EDLB, Amato MBP, et al. Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax. Acta Anaesthesiol Scand. 2015;59:354–368. doi: 10.1111/aas.12455.
    1. Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6:193–203. doi: 10.1016/S2213-2600(18)30024-9.
    1. Makaryus R, Miller TE, Gan TJ. Current concepts of fluid management in enhanced recovery pathways. Br J Anaesth. 2018;120:376–383. doi: 10.1016/j.bja.2017.10.011.
    1. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–826. doi: 10.1097/00000542-200210000-00012.
    1. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14:R118. doi: 10.1186/cc9070.
    1. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6:199–204. doi: 10.1186/cc1489.
    1. Vonk-Noordegraaf A, Janse A, Marcus JT, Bronzwaer JG, Postmust PE, Faes TJ, et al. Determination of stroke volume by means of electrical impedance tomography. Physiol Meas. 2000;21:285–293. doi: 10.1088/0967-3334/21/2/308.
    1. Pikkemaat R, Lundin S, Stenqvist O, Hilgers R-D, Leonhardt S. Recent advances in and limitations of cardiac output monitoring by means of electrical impedance tomography. Anesth Analg. 2014;119:76–83. doi: 10.1213/ANE.0000000000000241.
    1. da Silva Ramos FJ, Hovnanian A, Souza R, Azevedo LCP, Amato MBP, Costa ELV. Estimation of stroke volume and stroke volume changes by electrical impedance tomography. Anesth Analg. 2018;126:102–110. doi: 10.1213/ANE.0000000000002271.
    1. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–289. doi: 10.1186/cc710.
    1. Kubitz JC, Annecke T, Forkl S, Kemming GI, Kronas N, Goetz AE, et al. Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth. 2007;98:591–597. doi: 10.1093/bja/aem062.
    1. Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med. 2008;36:3001–3007. doi: 10.1097/CCM.0b013e31818b31f0.
    1. Maisch S, Bohm SH, Solà J, Goepfert MS, Kubitz JC, Richter HP, et al. Heart-lung interactions measured by electrical impedance tomography. Crit Care Med. 2011;39:2173–2176. doi: 10.1097/CCM.0b013e3182227e65.
    1. Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol. 2011;112:225–236. doi: 10.1152/japplphysiol.01090.2010.
    1. Graf M, Riedel T. Electrical impedance tomography: amplitudes of cardiac related impedance changes in the lung are highly position dependent. PLoS One. 2017;12:e0188313. doi: 10.1371/journal.pone.0188313.
    1. Braun F, Proença M, Adler A, Riedel T, Thiran J-P, Solà J. Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers. PLoS One. 2018;13:e0191870. doi: 10.1371/journal.pone.0191870.
    1. Teboul J-L, Monnet X. Just fastening the belt! Is it the future measure for assessing fluid responsiveness? Crit Care Med. 2011;39:2200–2201. doi: 10.1097/CCM.0b013e318226608b.
    1. Reychler G, Uribe Rodriguez V, Hickmann CE, Tombal B, Laterre P-F, Feyaerts A, et al. Incentive spirometry and positive expiratory pressure improve ventilation and recruitment in postoperative recovery: a randomized crossover study. Physiother Theory Pract. 2018:1–7.
    1. Karsten J, Heinze H, Meier T. Impact of PEEP during laparoscopic surgery on early postoperative ventilation distribution visualized by electrical impedance tomography. Minerva Anestesiol. 2014;80:158–166.
    1. Frasca D, Geraud L, Charriere JM, Debaene B, Mimoz O. Comparison of acoustic and impedance methods with mask capnometry to assess respiration rate in obese patients recovering from general anaesthesia. Anaesthesia. 2015;70:26–31. doi: 10.1111/anae.12799.
    1. Voscopoulos CJ, MacNabb CM, Brayanov J, Qin L, Freeman J, Mullen GJ, et al. The evaluation of a non-invasive respiratory volume monitor in surgical patients undergoing elective surgery with general anesthesia. J Clin Monit Comput. 2015;29:223–230. doi: 10.1007/s10877-014-9596-0.
    1. Heinze H, Eichler W, Karsten J, Sedemund-Adib B, Heringlake M, Meier T. Functional residual capacity-guided alveolar recruitment strategy after endotracheal suctioning in cardiac surgery patients. Crit Care Med. 2011;39:1042–1049. doi: 10.1097/CCM.0b013e31820eb736.
    1. Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014;35:990–997. doi: 10.1007/s00246-014-0886-6.
    1. Rossi F de S, Yagui ACZ, Haddad LB, Deutsch AD, Rebello CM. Electrical impedance tomography to evaluate air distribution prior to extubation in very-low-birth-weight infants: a feasibility study. Clinics (Sao Paulo) 2013;68:345–350. doi: 10.6061/clinics/2013(03)OA10.
    1. de la Oliva P, Waldmann AD, Böhm SH, Verdú-Sánchez C, Pérez-Ferrer A, Alvarez-Rojas E. Bedside breath-wise visualization of bronchospasm by electrical impedance tomography could improve perioperative patient safety: a case report. A A Case Rep. 2017;8:316–319. doi: 10.1213/XAA.0000000000000499.
    1. Zhao Z, Müller-Lisse U, Frerichs I, Fischer R, Möller K. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas. 2013;34:N107–N114. doi: 10.1088/0967-3334/34/11/N107.
    1. Smit HJ, Vonk Noordegraaf A, Roeleveld RJ, Bronzwaer JGF, Postmus PE, de Vries PMJM, et al. Epoprostenol-induced pulmonary vasodilatation in patients with pulmonary hypertension measured by electrical impedance tomography. Physiol Meas. 2002;23:237–243. doi: 10.1088/0967-3334/23/1/324.
    1. Grieco DL, Mura B, Bisanti A, Tagliaferri C, Maviglia R, Antonelli M. Electrical impedance tomography to monitor lung sampling during broncho-alveolar lavage. Intensive Care Med. 2016;42:1088–1089. doi: 10.1007/s00134-016-4302-y.
    1. Meduri GU, Chastre J. The standardization of bronchoscopic techniques for ventilator-associated pneumonia. Chest. 1992;102(5 Suppl 1):557S–564S. doi: 10.1378/chest.102.5_Supplement_1.557S.
    1. Frerichs I, Dargaville PA, Rimensberger PC. Regional pulmonary effects of bronchoalveolar lavage procedure determined by electrical impedance tomography. Intensive Care Med Exp. 2019;7:11. doi: 10.1186/s40635-019-0225-6.
    1. Becher T, Bußmeyer M, Lautenschläger I, Schädler D, Weiler N, Frerichs I. Characteristic pattern of pleural effusion in electrical impedance tomography images of critically ill patients. Br J Anaesth. 2018;120:1219–1228. doi: 10.1016/j.bja.2018.02.030.
    1. Yasin M, Böhm S, Gaggero PO, Adler A. Evaluation of EIT system performance. Physiol Meas. 2011;32:851–865. doi: 10.1088/0967-3334/32/7/S09.
    1. Bläser D, Pulletz S, Becher T, Schädler D, Elke G, Weiler N, et al. Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography. Physiol Meas. 2014;35:975–983. doi: 10.1088/0967-3334/35/6/975.
    1. Yoshida T, Torsani V, Gomes S, De Santis RR, Beraldo MA, Costa ELV, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013;188:1420–1427. doi: 10.1164/rccm.201303-0539OC.
    1. Alves SHS, Amato MBP, Terra RM, Vargas FS, Caruso P. Lung reaeration and reventilation after aspiration of pleural effusions. A study using electrical impedance tomography. Ann Am Thorac Soc. 2014;11:186–191. doi: 10.1513/AnnalsATS.201306-142OC.
    1. Chitturi V, Nagi F. Spatial resolution in electrical impedance tomography: a topical review. J Electrical Bioimpedance. 2017;8:66–78–78. doi: 10.5617/jeb.3350.
    1. Zhang F, Li C, Zhang J, Guo H, Wu D. Comparison of quantitative computed tomography analysis and single-indicator thermodilution to measure pulmonary edema in patients with acute respiratory distress syndrome. Biomed Eng Online. 2014;13:30. doi: 10.1186/1475-925X-13-30.
    1. Grychtol Bartłomiej, Schramel Johannes Peter, Braun Fabian, Riedel Thomas, Auer Ulrike, Mosing Martina, Braun Christina, Waldmann Andreas D, Böhm Stephan H, Adler Andy. Thoracic EIT in 3D: experiences and recommendations. Physiological Measurement. 2019;40(7):074006. doi: 10.1088/1361-6579/ab291d.

Source: PubMed

3
Abonnieren