Protocols of a diagnostic study and a randomized controlled non-inferiority trial comparing televisits vs standard in-person outpatient visits for narcolepsy diagnosis and care: TElemedicine for NARcolepsy (TENAR)

Francesca Ingravallo, Luca Vignatelli, Uberto Pagotto, Stefano Vandi, Monica Moresco, Anastasia Mangiaruga, Claudia Oriolo, Corrado Zenesini, Fabio Pizza, Giuseppe Plazzi, Francesca Ingravallo, Luca Vignatelli, Uberto Pagotto, Stefano Vandi, Monica Moresco, Anastasia Mangiaruga, Claudia Oriolo, Corrado Zenesini, Fabio Pizza, Giuseppe Plazzi

Abstract

Background: Narcolepsy is a rare chronic sleep disorder that typically begins in youth. Excessive daytime sleepiness is the main disabling symptom, but the disease is often associated with severe endocrine-metabolic and psychosocial issues, worsened by a long diagnostic delay, requiring a multidisciplinary approach. The scarcity of reference Sleep Centres forces the patient and family to travel for seeking medical consultations, increasing the economic and psychosocial burden of the disease. Growing evidence suggests that Telemedicine may facilitate patient access to sleep consultations and its non-inferiority in terms of patient satisfaction, adherence to treatment, and symptom improvement for sleep disorders. However, Telemedicine clinical and economic benefits for patients with narcolepsy are still unknown.

Methods: TENAR is a two-part project, including: 1. a cross-sectional study (involving 250 children and adults with suspected narcolepsy) evaluating the accuracy of Teletriage (i.e., a synchronous live interactive sleep assessment through a Televisit) for narcolepsy diagnosis compared to the reference standard; and 2. a two-arm, parallel, open randomized controlled trial (RCT) to demonstrate the non-inferiority of the multidisciplinary care of narcolepsy through Televisits versus standard care. In this RCT, 202 adolescents (> 14 y.o.) and adults with narcolepsy will be randomly allocated (1:1 ratio) either to Televisits via videoconference or to standard in-person outpatient follow-up visits (control arm). The primary outcome is sleepiness control (according to the Epworth Sleepiness Scale). Secondary outcomes are other symptoms control, compliance with treatment, metabolic control, quality of life, feasibility, patient and family satisfaction with care, safety, and disease-related costs. At baseline and at 12 months, patients will undergo neurologic, metabolic, and psychosocial assessments and we will measure primary and secondary outcomes. Primary outcomes will be also measured at 6 months (remotely or in person, according to the arm).

Discussion: TENAR project will assess, for the first time, the feasibility, accuracy, efficacy and safety of Telemedicine procedures applied to the diagnosis and the multidisciplinary care of children and adults with narcolepsy. The study may be a model for the remote management of other rare disorders, offering care access for patients living in areas lacking medical centres with specific expertise.

Trial registration: Number of the Tele-multidisciplinary care study NCT04316286. Registered 20 March 2020.

Keywords: Care; Diagnosis; Management; Narcolepsy; Quality of life; Sleep disorders; Sleepiness; Telemedicine; Televisit.

Conflict of interest statement

The Authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the randomized controlled trial

References

    1. Medicine AA of S. International classification of sleep disorders–third edition (ICSD-3). Darien, Am Acad Sleep Med. 2014;.
    1. Wijnans L, Lecomte C, de Vries C, Weibel D, Sammon C, Hviid A, et al. The incidence of narcolepsy in Europe: before, during, and after the influenza a(H1N1)pdm09 pandemic and vaccination campaigns. Vaccine [Internet] 2013;31(8):1246–1254. Available from: 10.1016/j.vaccine.2012.12.015.
    1. Thorpy MJ, Krieger AC. Delayed diagnosis of narcolepsy : characterization and impact. Sleep Med [Internet] 2014;15(5):502–507. Available from: 10.1016/j.sleep.2014.01.015.
    1. Luca G, Haba-Rubio J, Dauvilliers Y, Lammers GJ, Overeem S, Donjacour CE, et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European narcolepsy network study. J Sleep Res. 2013;22(5):482–495. doi: 10.1111/jsr.12044.
    1. Ingravallo F, Gnucci V, Pizza F, Vignatelli L, Govi A, Dormi A, et al. The burden of narcolepsy with cataplexy: how disease history and clinical features influence socio-economic outcomes. Sleep Med [Internet]. 2012;13(10):1293–1300. Available from: 10.1016/j.sleep.2012.08.002.
    1. Plazzi G, Clawges HM, Owens JA. Clinical characteristics and burden of illness in pediatric patients with narcolepsy. Pediatr Neurol [internet]. 2018;85:21–32. Available from: 10.1016/j.pediatrneurol.2018.06.008.
    1. Raggi A, Plazzi G, Ferri R. Health-related quality of life in patients with narcolepsy: a review of the literature. J Nerv Ment Dis. 2019;207(2):84–99. doi: 10.1097/NMD.0000000000000918.
    1. Carls G, Reddy SR, Broder MS, Tieu R, Villa KF, Profant J, et al. Burden of disease in pediatric narcolepsy: a claims-based analysis of health care utilization, costs, and comorbidities. Sleep Med [internet]. 2020;66:110–118. Available from: 10.1016/j.sleep.2019.08.008.
    1. Flores NM, Villa KF, Black J, Chervin RD, Witt EA. The humanistic and economic burden of narcolepsy. J Clin Sleep Med. 2016;12(3):401–407. doi: 10.5664/jcsm.5594.
    1. Thorpy MJ, Hiller G. The medical and economic burden of narcolepsy: implications for managed care. Am Heal Drug Benefits. 2017;10(5):233–240.
    1. Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S, Kallweit U, et al. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol. 2019;15(9):519–539. doi: 10.1038/s41582-019-0226-9.
    1. Bruyneel M. Telemedicine in the diagnosis and treatment of sleep apnoea. 2019;(1):1–10. Available from: 10.1183/16000617.0093-2018.
    1. Singh J, Badr MS, Diebert W, Epstein L, Hwang D, Karres V, et al. American Academy of Sleep Medicine ( AASM ) Position Paper for the Use of Telemedicine for the Diagnosis and Treatment of Sleep Disorders An American Academy of Sleep Medicine Position Paper 2015;11(10):1187–1198.
    1. Bruyneel M, Broecke S Van Den, Libert W, Ninane V. Real-time attended home-polysomnography with telematic data transmission. Int J Med Inform [Internet] 2013;82(8):696–701. Available from: 10.1016/j.ijmedinf.2013.02.008.
    1. Lugo V, Villanueva JA, Garmendia O, Montserrat JM. The role of telemedicine in obstructive sleep apnea management. Expert Rev Respir Med. 2017;11(9):699–709. doi: 10.1080/17476348.2017.1343147.
    1. Murphie P, Little S, Mckinstry B, Pinnock H. Remote consulting with telemonitoring of continuous positive airway pressure usage data for the routine review of people with obstructive sleep apnoea hypopnoea syndrome : A systematic review 2017;0(0):1–9.
    1. Zia S, Fields BG. Sleep Telemedicine An Emerging Field ’ s Latest Frontier. Chest [Internet] 2016;149(6):1556–1565. Available from: 10.1016/j.chest.2016.02.670.
    1. Hoet F, Libert W, Sanida C, Broecke S Van Den, Bruyneel A V, Bruyneel M. AC SC. Sleep Med [Internet]. 2017; Available from: 10.1016/j.sleep.2017.08.016.
    1. Fox NH-A, Goodfellow AJ, Wenner E, Fleetham J, Ryan J, Kwiatkowska CF, M Ayas N. The impact of a telemedicine monitoring system on positive airway pressure adherence in patients with obstructive sleep apnea : a randomized controlled trial. Sleep. 2012;35(4):477–481. doi: 10.5665/sleep.1728.
    1. Frasnelli M, Baty F, Niedermann J, Brutsche MH, Schoch OD. Effect of telemetric monitoring in the first 30 days of continuous positive airway pressure adaptation for obstructive sleep apnoea syndrome – a controlled pilot study. 2015;0(0):1–6.
    1. Stepnowsky C, Palau J, Marler M, Gifford AL. Pilot Randomized Trial of the Effect of Wireless Telemonitoring on Compliance and Treatment Efficacy in Obstructive Sleep Apnea Methods. J Med Internet Search. 2007;9(2).
    1. Farré R, Navajas D, Montserrat JM. Is telemedicine a key tool for improving continuous positive airway pressure adherence in patients with sleep apnea? Am J Respir Crit Care Med. 2018;197(1):12–14. doi: 10.1164/rccm.201709-1791ED.
    1. Müller KI, Alstadhaug KB, Bekkelund SI. A randomized trial of telemedicine efficacy and safety for nonacute headaches. Neurology. 2017;89(2):153–162. doi: 10.1212/WNL.0000000000004085.
    1. Castelnuovo G, Manzoni GM, Cuzziol P, Cesa GL, Tuzzi C, Villa V, et al. TECNOB: study design of a randomized controlled trial of a multidisciplinary telecare intervention for obese patients with type-2 diabetes. BMC Public Health. 2010;10(1):204. doi: 10.1186/1471-2458-10-204.
    1. Vignatelli L, Plazzi G, Bassein L, Barbato A, De Vincentiis A, Lugaresi E, et al. ICSD diagnostic criteria for narcolepsy: Interobserver reliability. Sleep. 2002;25(2):193–196. doi: 10.1093/sleep/25.2.193.
    1. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. john wiley & sons; 2013.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977:159–74.
    1. Vignatelli L, Plazzi G, Barbato A, Ferini-Strambi L, Manni R, Pompei F, et al. Italian version of the Epworth sleepiness scale: external validity. Neurol Sci. 2003;23(6):295–300. doi: 10.1007/s100720300004.
    1. Mannocci A, Di Thiene D, Del Cimmuto A, Masala D, Boccia A, De Vito E, et al. International Physical Activity Questionnaire: validation and assessment in an Italian sample. Ital J Public Health. 2010;7(4).
    1. Dauvilliers Y, Bassetti C, Lammers GJ, Arnulf I, Mayer G, Rodenbeck A, et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 2013;12(11):1068–1075. doi: 10.1016/S1474-4422(13)70225-4.
    1. Vignatelli L, Antelmi E, Ceretelli I, Bellini M, Carta C, Cortelli P, et al. Red flags for early referral of people with symptoms suggestive of narcolepsy: a report from a national multidisciplinary panel. Neurol Sci. 2019;40(3):447–456. doi: 10.1007/s10072-018-3666-x.
    1. Janssen KC, Phillipson S, O’Connor J, Johns MW. Validation of the Epworth sleepiness scale for children and adolescents using Rasch analysis. Sleep Med. 2017;33:30–35. doi: 10.1016/j.sleep.2017.01.014.
    1. Dauvilliers Y, Beziat S, Pesenti C, Lopez R, Barateau L, Carlander B, et al. Measurement of narcolepsy symptoms: the narcolepsy severity scale. Neurology. 2017;88(14):1358–1365. doi: 10.1212/WNL.0000000000003787.
    1. Beck AT, Ward C, Mendelson M, Mock J, Erbaugh J. Beck depression inventory (BDI) Arch Gen Psychiatry. 1961;4(6):561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Spielberger CD, Gorsuch RL. State-trait anxiety inventory for adults. Mind Garden: Palo Alto, CA; 1983.
    1. Finch AJ, Jr, Saylor CF, Edwards GL, McIntosh JA. Children’s depression inventory: reliability over repeated administrations. J Clin Child Psychol. 1987;16(4):339–341. doi: 10.1207/s15374424jccp1604_7.
    1. March JS, Parker JDA, Sullivan K, Stallings P, Conners CK. The multidimensional anxiety scale for children (MASC): factor structure, reliability, and validity. J Am Acad Child Adolesc Psychiatry. 1997;36(4):554–565. doi: 10.1097/00004583-199704000-00019.
    1. Kadouri A, Corruble E, Falissard B. The improved clinical global impression scale (iCGI): development and validation in depression. BMC Psychiatry. 2007;7(1):7. doi: 10.1186/1471-244X-7-7.
    1. Apolone G, Mosconi P. The Italian SF-36 health survey: translation, validation and norming. J Clin Epidemiol. 1998;51(11):1025–1036. doi: 10.1016/S0895-4356(98)00094-8.
    1. Varni JW, Seid M, Rode CA. The PedsQL™: measurement model for the pediatric quality of life inventory. Med Care. 1999:126–39.
    1. Solari A, Grzeda M, Giordano A, Mattarozzi K, D’Alessandro R, Simone A, et al. Use of Rasch analysis to refine a patient-reported questionnaire on satisfaction with communication of the multiple sclerosis diagnosis. Mult Scler J. 2014;20(9):1224–1233. doi: 10.1177/1352458513518261.

Source: PubMed

3
Abonnieren