Multiple Hits in Acute Pancreatitis: Components of Metabolic Syndrome Synergize Each Other's Deteriorating Effects

Andrea Szentesi, Andrea Párniczky, Áron Vincze, Judit Bajor, Szilárd Gódi, Patricia Sarlós, Noémi Gede, Ferenc Izbéki, Adrienn Halász, Katalin Márta, Dalma Dobszai, Imola Török, Hunor Farkas, Mária Papp, Márta Varga, József Hamvas, János Novák, Artautas Mickevicius, Elena Ramirez Maldonado, Ville Sallinen, Dóra Illés, Balázs Kui, Bálint Erőss, László Czakó, Tamás Takács, Péter Hegyi, Andrea Szentesi, Andrea Párniczky, Áron Vincze, Judit Bajor, Szilárd Gódi, Patricia Sarlós, Noémi Gede, Ferenc Izbéki, Adrienn Halász, Katalin Márta, Dalma Dobszai, Imola Török, Hunor Farkas, Mária Papp, Márta Varga, József Hamvas, János Novák, Artautas Mickevicius, Elena Ramirez Maldonado, Ville Sallinen, Dóra Illés, Balázs Kui, Bálint Erőss, László Czakó, Tamás Takács, Péter Hegyi

Abstract

Introduction: The incidence of acute pancreatitis (AP) and the prevalence of metabolic syndrome (MetS) are growing worldwide. Several studies have confirmed that obesity (OB), hyperlipidemia (HL), or diabetes mellitus (DM) can increase severity, mortality, and complications in AP. However, there is no comprehensive information on the independent or joint effect of MetS components on the outcome of AP. Our aims were (1) to understand whether the components of MetS have an independent effect on the outcome of AP and (2) to examine the joint effect of their combinations.

Methods: From 2012 to 2017, 1435 AP cases from 28 centers were included in the prospective AP Registry. Patient groups were formed retrospectively based on the presence of OB, HL, DM, and hypertension (HT). The primary endpoints were mortality, severity, complications of AP, and length of hospital stay. Odds ratio (OR) with 95% confidence intervals (CIs) were calculated.

Results: 1257 patients (55.7 ± 17.0 years) were included in the analysis. The presence of OB was an independent predictive factor for renal failure [OR: 2.98 (CI: 1.33-6.66)] and obese patients spent a longer time in hospital compared to non-obese patients (12.1 vs. 10.4 days, p = 0.008). HT increased the risk of severe AP [OR: 3.41 (CI: 1.39-8.37)], renal failure [OR: 7.46 (CI: 1.61-34.49)], and the length of hospitalization (11.8 vs. 10.5 days, p = 0.020). HL increased the risk of local complications [OR: 1.51 (CI: 1.10-2.07)], renal failure [OR: 6.4 (CI: 1.93-21.17)], and the incidence of newly diagnosed DM [OR: 2.55 (CI: 1.26-5.19)]. No relation was found between the presence of DM and the outcome of AP. 906 cases (mean age ± SD: 56.9 ± 16.7 years) had data on all four components of MetS available. The presence of two, three, or four MetS factors increased the incidence of an unfavorable outcome compared to patients with no MetS factors.

Conclusion: OB, HT, and HL are independent risk factors for a number of complications. HT is an independent risk factor for severity as well. Components of MetS strongly synergize each other's detrimental effect. It is important to search for and follow up on the components of MetS in AP.

Keywords: acute pancreatitis; diabetes mellitus; hyperlipidemia; hypertension; metabolic syndrome; mortality; obesity; severity.

Copyright © 2019 Szentesi, Párniczky, Vincze, Bajor, Gódi, Sarlós, Gede, Izbéki, Halász, Márta, Dobszai, Török, Farkas, Papp, Varga, Hamvas, Novák, Mickevicius, Maldonado, Sallinen, Illés, Kui, Erőss, Czakó, Takács and Hegyi.

Figures

FIGURE 1
FIGURE 1
Individual effect analysis. OB and the outcome of AP. (A) The share of male patients was lower in the OB group [∗OR: 0.75 (CI: 0.58–0.95)]. (B) There is no difference in the average age between the OB and non-OB groups (p = 0.398). (C) Obese patients have more than double the risk of severe AP [∗OR: 2.15 (CI: 1.31–3.54)]. (D) Obese patients did not have a higher risk of mortality. (E) Obese patients spent more time in the hospital (∗p = 0.008). (F) More local complications were observed in the OB group, although the difference was not significant. (G) Obese patients had a higher risk of systemic complications [∗OR: 1.99 (CI: 1.30–3.05)], respiratory failure [∗OR: 2.15 (CI: 1.26–3.65)], and renal failure [∗OR: 4.56 (CI: 2.23–9.32)].
FIGURE 2
FIGURE 2
Individual effect analysis. HT and the outcome of AP. (A) There are fewer male patients with HT [∗OR: 0.66 (CI: 0.52–0.84)]. (B) Patients with HT are older than patients without it (∗p < 0.001). (C) Hypertensive patients have more than double the risk of the severe form of AP [∗OR: 2.39 (CI: 1.30–4.38)]. (D) The risk of mortality was not higher in the HT group. (E) Patients with HT spent more time in the hospital (∗p = 0.020). (F) There was a higher incidence of fluid collection, pseudocysts, and new onset diabetes, although the difference was not significant. (G) Hypertensive patients have a higher risk of systemic complications [∗OR: 2.83 (CI: 1.64–4.88)], respiratory failure [∗OR: 3.14 (CI: 1.51–6.52)], heart failure [∗OR: 3.82 CI: (1.11–13.11)], and renal failure [∗OR: 6.40 (CI: 1.93–21.17)].
FIGURE 3
FIGURE 3
Individual effect analysis. HL and the outcome of AP. (A) There are more male patients with HL [∗OR: 1.47 (CI: 1.12–1.92)]. (B) Patients with HL are younger than patients without it (∗p < 0.001). (C) Hyperlipidemic patients have a lower chance of having mild AP [∗OR: 0.65 (CI: 0.49–0.85)]. (D) Patients with HL did not have a higher risk of mortality. (E) Patients with HL spent more time in the hospital (∗p = 0.053). (F) HL increases the risk of local complications [∗OR: 1.55 (CI: 1.17–2.05)], acute fluid collection [∗OR 1.48 (CI: 1.11–1.99)], and pseudocysts [∗OR 1.81 (CI: 1.14–2.88)]. (G) Hyperlipidemic patients have a higher risk of renal failure [∗OR 2.17 (CI: 1.51–4.43)].
FIGURE 4
FIGURE 4
Individual effect analysis. DM and the outcome of AP. (A) There is no significant difference in sex between the two groups. (B) Patients with diabetes are older than patients without it (∗p < 0.001). (C,D) Diabetic patients did not have a higher risk of moderately severe or severe AP or mortality in our cohort. (E) There is no difference in LOS between the two groups (p = 0.139). (F,G) As regards local or systemic complications, there are no differences between diabetic and non-diabetic patients in our cohort.
FIGURE 5
FIGURE 5
Joint effect analysis. The effect of MetS factor combinations on the outcome of AP. The more MetS factors are present, the more significantly higher incidence of the different outcome parameters can be observed. Statistical analysis is summarized in Supplementary Appendix S5.

References

    1. Alberti K. G., Eckel R. H., Grundy S. M., Zimmet P. Z., Cleeman J. I., Donato K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120 1640–1645. 10.1161/CIRCULATIONAHA.109.192644
    1. American Diabetes Association (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl. 1), S62–S69. 10.2337/dc10-S062
    1. Banks P. A., Bollen T. L., Dervenis C., Gooszen H. G., Johnson C. D., Sarr M. G., et al. (2013). Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut 62 102–111. 10.1136/gutjnl-2012-302779
    1. Bonfrate L., Wang D. Q., Garruti G., Portincasa P. (2014). Obesity and the risk and prognosis of gallstone disease and pancreatitis. Best Pract. Res. Clin. Gastroenterol. 28 623–635. 10.1016/j.bpg.2014.07.013
    1. Czako L., Hegyi P., Rakonczay Z., Jr., Wittmann T., Otsuki M. (2009). Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology 9 351–359. 10.1159/000181169
    1. Das S. L., Singh P. P., Phillips A. R., Murphy R., Windsor J. A., Petrov M. S. (2014). Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 63 818–831. 10.1136/gutjnl-2013-305062
    1. Dobszai D., Matrai P., Gyongyi Z., Csupor D., Bajor J., Eross B., et al. (2019). Body-mass index correlates with severity and mortality in acute pancreatitis: a meta-analysis. World J. Gastroenterol. 25 729–743. 10.3748/wjg.v25.i6.729
    1. Dubravcsik Z., Madacsy L., Gyokeres T., Vincze A., Szepes Z., Hegyi P., et al. (2015). Preventive pancreatic stents in the management of acute biliary pancreatitis (PREPAST trial): pre-study protocol for a multicenter, prospective, randomized, interventional, controlled trial. Pancreatology 15 115–123. 10.1016/j.pan.2015.02.007
    1. Egi M., Bellomo R., Stachowski E., French C. J., Hart G. K., Hegarty C., et al. (2008). Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit. Care Med. 36 2249–2255. 10.1097/CCM.0b013e318181039a
    1. Forsmark C. E., Vege S. S., Wilcox C. M. (2016). Acute pancreatitis. N. Engl. J. Med. 375 1972–1981. 10.1056/NEJMra1505202
    1. Garg S. K., Sarvepalli S., Campbell J. P., Obaitan I., Singh D., Bazerbachi F., et al. (2019). Incidence, admission rates, and predictors, and economic burden of adult emergency visits for acute pancreatitis: data from the national emergency department sample, 2006 to 2012. J Clin Gastroenterol 53 220–225. 10.1097/MCG.0000000000001030
    1. Goodger R. L., Asrani V. M., Windsor J. A., Petrov M. S. (2016). Impact of metabolic comorbidities on outcomes of patients with acute pancreatitis: a scoping review. Panminerva Med. 58 86–93.
    1. Graham B. B., Keniston A., Gajic O., Trillo Alvarez C. A., Medvedev S., Douglas I. S. (2010). Diabetes mellitus does not adversely affect outcomes from a critical illness. Crit. Care Med. 38 16–24. 10.1097/CCM.0b013e3181b9eaa5
    1. Hegyi P., Takacs T., Jarmay K., Nagy I., Czako L., Lonovics J. (1997). Spontaneous and cholecystokinin-octapeptide-promoted regeneration of the pancreas following L-arginine-induced pancreatitis in rat. Int. J. Pancreatol. 22 193–200. 10.1007/BF02788384
    1. Hritz I., Hegyi P. (2015). Early achievable severity (EASY) index for simple and accurate expedite risk stratification in acute pancreatitis. J. Gastrointestin. Liver Dis. 24 177–182. 10.15403/jgld.2014.1121.242.easy
    1. Isomaa B., Almgren P., Tuomi T., Forsen B., Lahti K., Nissen M., et al. (2001). Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24 683–689.
    1. Jensen M. D., Ryan D. H., Apovian C. M., Ard J. D., Comuzzie A. G., Donato K. A., et al. (2014). 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 63(25 Pt B), 2985–3023. 10.1016/j.jacc.2013.11.004
    1. Kiss L., Fur G., Matrai P., Hegyi P., Ivany E., Cazacu I. M., et al. (2018). The effect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Sci. Rep. 8:14096. 10.1038/s41598-018-32337-x
    1. Majumder S., Philip N. A., Takahashi N., Levy M. J., Singh V. P., Chari S. T. (2017). Fatty pancreas: should we be concerned? Pancreas 46 1251–1258. 10.1097/MPA.0000000000000941
    1. Marta K., Szabo A. N., Pecsi D., Varju P., Bajor J., Godi S., et al. (2017). High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double-blind clinical trial. BMJ Open 7:e015874. 10.1136/bmjopen-2017-015874
    1. Matsuda A., Makino N., Tozawa T., Shirahata N., Honda T., Ikeda Y., et al. (2014). Pancreatic fat accumulation, fibrosis, and acinar cell injury in the Zucker diabetic fatty rat fed a chronic high-fat diet. Pancreas 43 735–743. 10.1097/MPA.0000000000000129
    1. Miko A., Farkas N., Garami A., Szabo I., Vincze A., Veres G., et al. (2018). Preexisting diabetes elevates risk of local and systemic complications in acute pancreatitis: systematic review and meta-analysis. Pancreas 47 917–923. 10.1097/MPA.0000000000001122
    1. Mikolasevic I., Milic S., Orlic L., Poropat G., Jakopcic I., Franjic N., et al. (2016). Metabolic syndrome and acute pancreatitis. Eur. J. Intern. Med. 32 79–83. 10.1016/j.ejim.2016.04.004
    1. Moran R. A., Garcia-Rayado G., de la Iglesia-Garcia D., Martinez-Moneo E., Fort-Martorell E., Lauret-Brana E., et al. (2018). Influence of age, body mass index and comorbidity on major outcomes in acute pancreatitis, a prospective nation-wide multicentre study. United European Gastroenterol. J. 6 1508–1518. 10.1177/2050640618798155
    1. Mounzer R., Langmead C. J., Wu B. U., Evans A. C., Bishehsari F., Muddana V., et al. (2012). Comparison of existing clinical scoring systems to predict persistent organ failure in patients with acute pancreatitis. Gastroenterology 142 1476–1482. 10.1053/j.gastro.2012.03.005
    1. Navina S., Acharya C., DeLany J. P., Orlichenko L. S., Baty C. J., Shiva S. S., et al. (2011). Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med. 3:107ra110. 10.1126/scitranslmed.3002573
    1. Parniczky A., Mosztbacher D., Zsoldos F., Toth A., Lasztity N., Hegyi P., et al. (2016). Analysis of pediatric pancreatitis (APPLE Trial): pre-study protocol of a multinational prospective clinical trial. Digestion 93 105–110. 10.1159/000441353
    1. Pedersen S. B., Langsted A., Nordestgaard B. G. (2016). Nonfasting mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med 176 1834–1842. 10.1001/jamainternmed.2016.6875
    1. Premkumar R., Phillips A. R., Petrov M. S., Windsor J. A. (2015). The clinical relevance of obesity in acute pancreatitis: targeted systematic reviews. Pancreatology 15 25–33. 10.1016/j.pan.2014.10.007
    1. Sawalhi S., Al-Maramhy H., Abdelrahman A. I., Allah S. E., Al-Jubori S. (2014). Does the presence of obesity and/or metabolic syndrome affect the course of acute pancreatitis: a prospective study. Pancreas 43 565–570. 10.1097/MPA.0000000000000028
    1. Seravalle G., Mancia G., Grassi G. (2014). Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press. Cardiovasc. Prev. 21 89–105. 10.1007/s40292-014-0056-1
    1. Smeets X., Knoester I., Grooteman K. V., Singh V. K., Banks P. A., Papachristou G. I., et al. (2019). The association between obesity and outcomes in acute pancreatitis: an individual patient data meta-analysis. Eur. J. Gastroenterol. Hepatol. 31 316–322. 10.1097/MEG.0000000000001300
    1. Smits M. M., van Geenen E. J. (2011). The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 8 169–177. 10.1038/nrgastro.2011.4
    1. Szakacs Z., Gede N., Pecsi D., Izbeki F., Papp M., Kovacs G., et al. (2018). Aging and comorbidities in acute pancreatitis II.: a cohort-analysis of 1203 prospectively collected cases. Front. Physiol. 9:1776. 10.3389/fphys.2018.01776
    1. Takacs T., Hegyi P., Jarmay K., Czako L., Gog C., Rakonczay Z., Jr., et al. (2001). Cholecystokinin fails to promote pancreatic regeneration in diabetic rats following the induction of experimental pancreatitis. Pharmacol. Res. 44 363–372. 10.1006/phrs.2001.0843
    1. von Eckardstein A., Sibler R. A. (2011). Possible contributions of lipoproteins and cholesterol to the pathogenesis of diabetes mellitus type 2. Curr. Opin. Lipidol. 22 26–32. 10.1097/MOL.0b013e3283412279
    1. Whitcomb B. W., Pradhan E. K., Pittas A. G., Roghmann M. C., Perencevich E. N. (2005). Impact of admission hyperglycemia on hospital mortality in various intensive care unit populations. Crit. Care Med. 33 2772–2777.
    1. Working Group Iap/Apa Acute Pancreatitis Guidelines (2013). IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 13(4 Suppl. 2), e1–e15. 10.1016/j.pan.2013.07.063
    1. Yadav D., Lowenfels A. B. (2013). The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144 1252–1261. 10.1053/j.gastro.2013.01.068
    1. Yang L., He Z., Tang X., Liu J. (2013). Type 2 diabetes mellitus and the risk of acute pancreatitis: a meta-analysis. Eur. J. Gastroenterol. Hepatol. 25 225–231. 10.1097/MEG.0b013e32835af154
    1. Zsoldos F., Parniczky A., Mosztbacher D., Toth A., Lasztity N., Hegyi P., et al. (2016). Pain in the early phase of pediatric pancreatitis (PINEAPPLE Trial): pre-study protocol of a multinational prospective clinical trial. Digestion 93 121–126. 10.1159/000441352

Source: PubMed

3
Abonnieren