FEV1 and FVC and systemic inflammation in a spinal cord injury cohort

Jaime E Hart, Rebekah Goldstein, Palak Walia, Merilee Teylan, Antonio Lazzari, Carlos G Tun, Eric Garshick, Jaime E Hart, Rebekah Goldstein, Palak Walia, Merilee Teylan, Antonio Lazzari, Carlos G Tun, Eric Garshick

Abstract

Background: Systemic inflammation has been associated with reduced pulmonary function in individuals with and without chronic medical conditions. Individuals with chronic spinal cord injury (SCI) have clinical characteristics that promote systemic inflammation and also have reduced pulmonary function. We sought to assess the associations between biomarkers of systemic inflammation with pulmonary function in a chronic SCI cohort, adjusting for other potential confounding factors.

Methods: Participants (n = 311) provided a blood sample, completed a respiratory health questionnaire, and underwent spirometry. Linear regression methods were used to assess cross-sectional associations between plasma C-reactive protein (CRP) and interleukin-6 (IL-6) with forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC.

Results: There were statistically significant inverse relationships between plasma CRP and IL-6 assessed in quartiles or continuously with FEV1 and FVC. In fully adjusted models, each interquartile range (5.91 mg/L) increase in CRP was associated with a significant decrease in FEV1 (-55.85 ml; 95% CI: -89.21, -22.49) and decrease in FVC (-65.50 ml; 95% CI: -106.61, -24.60). There were similar significant findings for IL-6. There were no statistically significant associations observed with FEV1/FVC.

Conclusion: Plasma CRP and IL-6 in individuals with chronic SCI are inversely associated with FEV1 and FVC, independent of SCI level and severity of injury, BMI, and other covariates. This finding suggests that systemic inflammation associated with chronic SCI may contribute to reduced pulmonary function.

Keywords: CRP; Chronic spinal cord injury; Il-6; Pulmonary function; Systemic inflammation.

Conflict of interest statement

Ethics approval and consent to participate

The present study was approved by a local institutional review board of Boston Veteran Affairs Hospital (IRB No. 2232, 2417, 2751). Written informed consent was obtained from all study participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–580. doi: 10.1136/thx.2003.019588.
    1. Yende S, Waterer GW, Tolley EA, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax. 2006;61(1):10–16. doi: 10.1136/thx.2004.034181.
    1. Walter RE, Wilk JB, Larson MG, et al. Systemic inflammation and COPD: the Framingham heart study. Chest. 2008;133(1):19–25. doi: 10.1378/chest.07-0058.
    1. Aronson D, Roterman I, Yigla M, et al. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med. 2006;174(6):626–632. doi: 10.1164/rccm.200602-243OC.
    1. Thorleifsson SJ, Margretardottir OB, Gudmundsson G, et al. Chronic airflow obstruction and markers of systemic inflammation: results from the BOLD study in Iceland. Respir Med. 2009;103(10):1548–1553. doi: 10.1016/j.rmed.2009.04.005.
    1. Kuhlmann A, Ólafsdóttir IS, Lind L, Sundstrom J, Janson C. Association of biomarkers of inflammation and cell adhesion with lung function in the elderly: a population-based study. BMC Geriatr. 2013;13:82. doi: 10.1186/1471-2318-13-82.
    1. Duprez DA, Hearst MO, Lutsey PL, et al. Associations among lung function, arterial elasticity, and circulating endothelial and inflammation markers: the multiethnic study of atherosclerosis. Hypertension. 2013;61(2):542–548. doi: 10.1161/HYPERTENSIONAHA.111.00272.
    1. Agarwal R, Zaheer MS, Ahmad Z, Akhtar J. The relationship between C-reactive protein and prognostic factors in chronic obstructive pulmonary disease. Multidiscip Respir Med. 2013;8(1):63. doi: 10.1186/2049-6958-8-63.
    1. Aksu F, Capan N, Aksu K, et al. C-reactive protein levels are raised in stable chronic obstructive pulmonary disease patients independent of smoking behavior and biomass exposure. J Thorac Dis. 2013;5(4):414–421.
    1. Ólafsdóttir IS, Gíslason T, Gudnason V, et al. CRP is associated with lung function decline in men but not women: a prospective study. Respir Med. 2013;107(1):91–97. doi: 10.1016/j.rmed.2012.09.020.
    1. Emami Ardestani M, Zaerin O. Role of serum interleukin 6, albumin and C-reactive protein in COPD patients. Tanaffos. 2015;14(2):134–140.
    1. Hancox RJ, Poulton R, Greene JM, et al. Systemic inflammation and lung function in young adults. Thorax. 2007;62(12):1064–1068. doi: 10.1136/thx.2006.076877.
    1. Garshick E, Stolzmann KL, Gagnon DR, Morse LR, Brown R. Systemic inflammation and reduced pulmonary function in chronic spinal cord injury. PM R. 2011;3(5):433–439. doi: 10.1016/j.pmrj.2011.02.003.
    1. Hart JE, Morse L, Tun CG, Brown R, Garshick E. Cross-sectional associations of pulmonary function with systemic inflammation and oxidative stress in individuals with chronic spinal cord injury. J Spinal Cord Med. 2016;39(3):344–352. doi: 10.1179/2045772315Y.0000000045.
    1. Gläser S, Ittermann T, Koch B, et al. Airflow limitation, lung volumes and systemic inflammation in a general population. Eur Respir J. 2012;39(1):29–37. doi: 10.1183/09031936.00009811.
    1. Rasmussen F, Mikkelsen D, Hancox RJ, et al. High-sensitive C-reactive protein is associated with reduced lung function in young adults. Eur Respir J. 2009;33(2):382–388. doi: 10.1183/09031936.00040708.
    1. Zhang P, Wu HM, Shen QY, Liu RY, Qi XM. Associations of pulmonary function with serum biomarkers and dialysis adequacy in patients undergoing peritoneal dialysis. Clin Exp Nephrol. 2016;20(6):951–959. doi: 10.1007/s10157-016-1244-1.
    1. Shaaban R, Kony S, Driss F, et al. Change in C-reactive protein levels and FEV1 decline: a longitudinal population-based study. Respir Med. 2006;100(12):2112–2120. doi: 10.1016/j.rmed.2006.03.027.
    1. Kalhan R, Tran BT, Colangelo LA, et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PLoS One. 2010;5(7) doi: 10.1371/journal.pone.0011431.
    1. Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal association of C-reactive protein and lung function over 13 years: the EPIC-Norfolk study. Am J Epidemiol. 2014;179(1):48–56. doi: 10.1093/aje/kwt208.
    1. Donaldson GC, Seemungal TA, Patel IS, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128(4):1995–2004. doi: 10.1378/chest.128.4.1995.
    1. Fogarty AW, Jones S, Britton JR, Lewis SA, McKeever TM. Systemic inflammation and decline in lung function in a general population: a prospective study. Thorax. 2007;62(6):515–520. doi: 10.1136/thx.2006.066969.
    1. Jiang R, Burke GL, Enright PL, et al. Inflammatory markers and longitudinal lung function decline in the elderly. Am J Epidemiol. 2008;168(6):602–610. doi: 10.1093/aje/kwn174.
    1. Hancox RJ, Gray AR, Sears MR, Poulton R. Systemic inflammation and lung function: a longitudinal analysis. Respir Med. 2016;111:54–59. doi: 10.1016/j.rmed.2015.12.007.
    1. Frost F, Roach MJ, Kushner I, Schreiber P. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(2):312–317. doi: 10.1016/j.apmr.2004.02.009.
    1. Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil. 2003;84(7):1068–1071. doi: 10.1016/S0003-9993(03)00045-5.
    1. Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40(Suppl 1):S183–S186. doi: 10.1007/s00592-003-0061-7.
    1. Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007;86(2):142–152. doi: 10.1097/PHM.0b013e31802f0247.
    1. Nelson MD, Widman LM, Abresch RT, et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med. 2007;30(Suppl 1):S127–S139. doi: 10.1080/10790268.2007.11754591.
    1. Segal JL, Gonzales E, Yousefi S, Jamshidipour L, Brunnemann SR. Circulating levels of IL-2R, ICAM-1, and IL-6 in spinal cord injuries. Arch Phys Med Rehabil. 1997;78(1):44–47. doi: 10.1016/S0003-9993(97)90008-3.
    1. Spungen AM, Adkins RH, Stewart CA, et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95(6):2398–2407. doi: 10.1152/japplphysiol.00729.2002.
    1. Morse LR, Stolzmann K, Nguyen HP, et al. Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil. 2008;89(4):726–731. doi: 10.1016/j.apmr.2007.09.046.
    1. Standardization of Spirometry, 1994 Update American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107–1136. doi: 10.1164/ajrccm.152.3.7663792.
    1. Kelley A, Garshick E, Gross ER, Lieberman SL, Tun CG, Brown R. Spirometry testing standards in spinal cord injury. Chest. 2003;123(3):725–730. doi: 10.1378/chest.123.3.725.
    1. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159(1):179–187. doi: 10.1164/ajrccm.159.1.9712108.
    1. Redlich CA, Tarlo SM, Hankinson JL, Townsend MC, Eschenbacher WL. Official American Thoracic Society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med. 2014;189(8):984–994. doi: 10.1164/rccm.201402-0337ST.
    1. Kirshblum SC, Waring W, Biering-Sorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2011;34(6):547–554. doi: 10.1179/107902611X13186000420242.
    1. Goldstein RL, Walia P, Teylan M, et al. Clinical factors associated with C-reactive protein in chronic spinal cord injury. Spinal Cord. 1 August 2017; doi:10.1038/sc.2017.81.
    1. Ferrucci L, Penninx BW, Volpato S, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc. 2002;50(12):1947–1954. doi: 10.1046/j.1532-5415.2002.50605.x.
    1. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(6):526 e9–526 17. doi: 10.1016/j.amjmed.2005.10.049.
    1. Drummond MJ, Timmerman KL, Markofski MM, et al. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R216–R223. doi: 10.1152/ajpregu.00072.2013.
    1. Aleman H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing. 2011;40(4):469–475. doi: 10.1093/ageing/afr040.

Source: PubMed

3
Abonnieren