Factors influencing the latency of simple reaction time

David L Woods, John M Wyma, E William Yund, Timothy J Herron, Bruce Reed, David L Woods, John M Wyma, E William Yund, Timothy J Herron, Bruce Reed

Abstract

Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output.

Keywords: foreperiod; gender; handedness; hemisphere; motor; processing speed; replication; timing.

Figures

FIGURE 1
FIGURE 1
Stimuli and task. Stimuli were high-contrast bulls eyes presented to the left or right hemifield for a duration of 200 ms at randomized stimulus onset asynchronies (SOAs) that ranged from 1000 to 1800 ms in five 200 ms steps in Experiment 1, and from 1000 to 2000 ms in five 250 ms steps in Experiment 2. Stimuli could occur in the visual hemifield ipsilateral (shown) or contralateral to the responding hand. Subjects responded to all stimuli as rapidly as possible by depressing the mouse button with the index finger of their dominant hand (i.e., right-handed subjects depressed the left mouse button and left headed subjects depressed the right mouse button).
FIGURE 2
FIGURE 2
Simple reaction times (SRTs) as a function of age. From subjects in Experiment 1 (blue diamonds) and Experiment 2 (open red squares). Eight subjects from Experiment 1 with mean SRTs above 350 ms are not shown. The linear trend line is from Experiment 1 data.
FIGURE 3
FIGURE 3
Mean SRTs as a function of preceding SOA. From Experiment 1 and Experiment 2. Error bars show 95% confidence intervals. X, SOA step size (200 ms in Experiment 1 and 250 ms in Experiment 2).
FIGURE 4
FIGURE 4
Stimulus detection time (SDT) as a function of age. SDT was derived by subtracting the movement initiation time in a speeded finger tapping test from SRTs. The linear trend line is from Experiment 1 data.

References

    1. Annett M., Annett J. (1979). Individual differences in right and left reaction time. Br. J. Psychol. 70 393–404 10.1111/j.2044-8295.1979.tb01709.x
    1. Anstey K. J., Dear K., Christensen H., Jorm A. F. (2005). Biomarkers, health, lifestyle, and demographic variables as correlates of reaction time performance in early, middle, and late adulthood. Q. J. Exp. Psychol. A 58 5–21 10.1080/02724980443000232
    1. Benwell C. S., Thut G., Grant A., Harvey M. (2014). A rightward shift in the visuospatial attention vector with healthy aging. Front. Aging Neurosci. 6:113 10.3389/fnagi.2014.00113
    1. Berlingeri M., Danelli L., Bottini G., Sberna M., Paulesu E. (2013). Reassessing the HAROLD model: is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp. Brain Res. 224 393–410 10.1007/s00221-012-3319-x
    1. Bherer L., Belleville S. (2004). Age-related differences in response preparation: the role of time uncertainty. J. Gerontol. B Psychol. Sci. Soc. Sci. 59 P66–P74 10.1093/geronb/59.2.P66
    1. Bielak A. A., Cherbuin N., Bunce D., Anstey K. J. (2014). Intraindividual variability is a fundamental phenomenon of aging: evidence from an 8-year longitudinal study across young, middle, and older adulthood. Dev. Psychol. 50 143–151 10.1037/a0032650
    1. Bisiacchi P., Marzi C. A., Nicoletti R., Carena G., Mucignat C., Tomaiuolo F. (1994). Left-right asymmetry of callosal transfer in normal human subjects. Behav. Brain Res. 64 173–178 10.1016/0166-4328(94)90129-5
    1. Brizzolara D., Ferretti G., Brovedani P., Casalini C., Sbrana B. (1994). Is interhemispheric transfer time related to age? A developmental study. Behav. Brain Res. 64 179–184 10.1016/0166-4328(94)90130-9
    1. Bugg J. M., Zook N. A., Delosh E. L., Davalos D. B., Davis H. P. (2006). Age differences in fluid intelligence: contributions of general slowing and frontal decline. Brain Cogn. 62 9–16 10.1016/j.bandc.2006.02.006
    1. Caminiti R., Ghaziri H., Galuske R., Hof P. R., Innocenti G. M. (2009). Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc. Natl. Acad. Sci. U.S.A. 106 19551–19556 10.1073/pnas.0907655106
    1. Chaumillon R., Blouin J., Guillaume A. (2014). Eye dominance influences triggering action: the Poffenberger paradigm revisited. Cortex 58 86–98 10.1016/j.cortex.2014.05.009
    1. Clarke J. M., Zaidel E. (1989). Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes. Brain 112(Pt 4) 849–870 10.1093/brain/112.4.849
    1. Commodari E., Guarnera M. (2008). Attention and aging. Aging Clin. Exp. Res. 20 578–584 10.1007/BF03324887
    1. Deary I. J., Der G. (2005). Reaction time, age, and cognitive ability: longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 12 187–215 10.1080/13825580590969235
    1. Deary I. J., Der G., Ford G. (2001). Reaction times and intelligence differences: a population-based cohort study. Intelligence 29 389–399 10.1016/S0160-2896(01)00062-9
    1. Deary I. J., Johnson W., Starr J. M. (2010). Are processing speed tasks biomarkers of cognitive aging? Psychol. Aging 25 219–228 10.1037/a0017750
    1. Deary I. J., Liewald D., Nissan J. (2011). A free, easy-to-use, computer-based simple and four-choice reaction time programme: the Deary-Liewald reaction time task. Behav. Res. Methods 43 258–268 10.3758/s13428-010-0024-1
    1. Der G., Deary I. J. (2006). Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychol. Aging 21 62–73 10.1037/0882-7974.21.1.62
    1. Dordonova Y. A., Dordonov Y. S. (2013). Is there any evidence of historical slowing of reaction time? No, unless we compare apples and oranges. Intelligence 41 674–687 10.1016/j.intell.2013.09.001
    1. Dykiert D., Der G., Starr J. M., Deary I. J. (2012a). Age differences in intra-individual variability in simple and choice reaction time: systematic review and meta-analysis. PLoS ONE 7:e45759 10.1371/journal.pone.0045759
    1. Dykiert D., Der G., Starr J. M., Deary I. J. (2012b). Sex differences in reaction time mean and intraindividual variability across the life span. Dev. Psychol. 48 1262–1276 10.1037/a0027550
    1. Eckner J. T., Kutcher J. S., Richardson J. K. (2011). Between-seasons test-retest reliability of clinically measured reaction time in National Collegiate Athletic Association Division I athletes. J. Athl. Train. 46 409–414.
    1. Emmerson-Hanover R., Shearer D. E., Creel D. J., Dustman R. E. (1994). Pattern reversal evoked potentials: gender differences and age-related changes in amplitude and latency. Electroencephalogr. Clin. Neurophysiol. 92 93–101 10.1016/0168-5597(94)90049-3
    1. Era P., Sainio P., Koskinen S., Ohlgren J., Harkanen T., Aromaa A. (2011). Psychomotor speed in a random sample of 7979 subjects aged 30 years and over. Aging Clin. Exp. Res. 23 135–144 10.1007/BF03351077
    1. Fittro K. P., Bolla K. I., Heller J. R., Meyd C. J. (1992). The Milan Automated Neurobehavioral System. Age, sex, and education differences. J. Occup. Med. 34 918–922.
    1. Forstmann B. U., Tittgemeyer M., Wagenmakers E. J., Derrfuss J., Imperati D., Brown S. (2011). The speed-accuracy tradeoff in the elderly brain: a structural model-based approach. J. Neurosci. 31 17242–17249 10.1523/JNEUROSCI.0309-11.2011
    1. Fozard J. L., Vercryssen M., Reynolds S. L., Hancock P. A., Quilter R. E. (1994). Age differences and changes in reaction time: the Baltimore Longitudinal Study of Aging. J. Gerontol. 49 P179–P189 10.1093/geronj/49.4.P179
    1. Godefroy O., Roussel M., Despretz P., Quaglino V., Boucart M. (2010). Age-related slowing: perceptuomotor, decision, or attention decline? Exp. Aging Res. 36 169–189 10.1080/03610731003613615
    1. Gottsdanker R. (1982). Age and simple reaction time. J. Gerontol. 37 342–348 10.1093/geronj/37.3.342
    1. Greenwood P. M., Parasuraman R., Haxby J. V. (1993). Changes in visuospatial attention over the adult lifespan. Neuropsychologia 31 471–485 10.1016/0028-3932(93)90061-4
    1. Hubel K. A., Reed B., Yund E. W., Herron T. J., Woods D. L. (2013a). Computerized measures of finger tapping: effects of hand dominance, age, and sex. Percept. Mot. Skills 116 929–952 10.2466/25.29.PMS.116.3.929-952
    1. Hubel K. A., Yund E. W., Herron T. J., Woods D. L. (2013b). Computerized measures of finger tapping: reliability, malingering and traumatic brain injury. J. Clin. Exp. Neuropsychol. 35 745–758 10.1080/13803395.2013.824070
    1. Inui N. (1997). Simple reaction times and timing of serial reactions of middle-aged and old men. Percept. Mot. Skills 84 219–225 10.2466/pms.1997.84.1.219
    1. Jensen A. R. (2011). The theory of intelligence and its measurement. Intelligence 39 171–177 10.1016/j.intell.2011.03.004
    1. Johnson R. C., Mcclearn G. E., Yuen S., Nagoshi C. T., Ahern F. M., Cole R. E. (1985). Galton’s data a century later. Am. Psychol. 40 875–892 10.1037/0003-066X.40.8.875
    1. Krieg E. F., Jr., Chrislip D. W., Letz R. E., Otto D. A., Crespo C. J., Brightwell N. S., et al. (2001). Neurobehavioral test performance in the third National Health and Nutrition Examination Survey. Neurotoxicol. Teratol. 23 569–589 10.1016/S0892-0362(01)00177-5
    1. Levin O., Cuypers K., Netz Y., Thijs H., Nuttin B., Helsen W. F., et al. (2011). Age-related differences in human corticospinal excitability during simple reaction time. Neurosci. Lett. 487 53–57 10.1016/j.neulet.2010.09.072
    1. Lowe C., Rabbitt P. (1998). Test/re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: theoretical and practical issues. Cambridge Neuropsychological Test Automated Battery. International Study of Post-Operative Cognitive Dysfunction. Neuropsychologia 36 915–923 10.1016/S0028-3932(98)00036-0
    1. Miller J., Ulrich R. (2003). Simple reaction time and statistical facilitation: a parallel grains model. Cogn. Psychol. 46 101–151 10.1016/S0010-0285(02)00517-0
    1. Montare A. (2010). The simplest chronoscope II: reaction time measured by meterstick versus machine. Percept. Mot. Skills 111 819–828 10.2466/03.15.25.PMS.111.6.819-828
    1. Montare A. (2013). Simplest chronoscope. III: further comparisons between reaction times obtained by meterstick versus machine. Percept. Mot. Skills 116 796–805 10.2466/27.24.PMS.116.3.796-805
    1. Neath I., Earle A., Hallett D., Surprenant A. M. (2011). Response time accuracy in Apple Macintosh computers. Behav. Res. Methods 43 353–362 10.3758/s13428-011-0069-9
    1. Niemi P., Naatanen R. (1981). Foreperiod and simple reaction time. Psychol. Bull. 89 133–162 10.1037/0033-2909.89.1.133
    1. Parker S. (2014). Were the Victorians cleverer than us? Maybe, maybe not. Intelligence 47 1–2 10.1016/j.intell.2014.08.002
    1. Pins D., Bonnet C. (1996). On the relation between stimulus intensity and processing time: Piéron’s law and choice reaction time. Percept. Psychophys. 58 390–400 10.3758/BF03206815
    1. Plant R. R., Turner G. (2009). Millisecond precision psychological research in a world of commodity computers: new hardware, new problems? Behav. Res. Methods 41 598–614 10.3758/BRM.41.3.598
    1. Ratcliff R., Thapar A., Mckoon G. (2001). The effects of aging on reaction time in a signal detection task. Psychol. Aging 16 323–341 10.1037/0882-7974.16.2.323
    1. Ratcliff R., Van Dongen H. P. (2011). Diffusion model for one-choice reaction-time tasks and the cognitive effects of sleep deprivation. Proc. Natl. Acad. Sci. U.S.A. 108 11285–11290 10.1073/pnas.1100483108
    1. Reed B. R., Crane J., Garrett N., Woods D. L., Bates M. N. (2014). Chronic ambient hydrogen sulfide exposure and cognitive function. Neurotoxicol. Teratol. 42 68–76 10.1016/j.ntt.2014.02.002
    1. Reeves D. L., Bleiberg J., Roebuck-Spencer T., Cernich A. N., Schwab K., Ivins B., et al. (2006). Reference values for performance on the Automated Neuropsychological Assessment Metrics V3.0 in an active duty military sample. Mil. Med. 171 982–994.
    1. Reeves D. L., Winter K. P., Bleiberg J., Kane R. L. (2007). ANAM genogram: historical perspectives, description, and current endeavors. Arch. Clin. Neuropsychol. 22(Suppl. 1) S15–S37 10.1016/j.acn.2006.10.013
    1. Reimers S., Maylor E. A. (2006). Gender effects on reaction time variability and trial-to-trial performance: reply to Deary and Der (2005). Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 13 479–489 10.1080/138255890969375
    1. Ritchie S. J., Bates T. C., Der G., Starr J. M., Deary I. J. (2013). Education is associated with higher later life IQ scores, but not with faster cognitive processing speed. Psychol. Aging 28 515–521 10.1037/a0030820
    1. Robinson D. L., Kertzman C. (1990). Visuospatial attention: effects of age, gender, and spatial reference. Neuropsychologia 28 291–301 10.1016/0028-3932(90)90022-G
    1. Sheppard L., Vernon P. A. (2008). Intelligence and speed of information-processing: a review of 50 years of research. Pers. Individ. Dif. 44 535–551 10.1016/j.paid.2007.09.015
    1. Silverman I. W. (2006). Sex differences in simple visual reaction time: a historical meta-analysis. Sex Roles 54 58–68 10.1007/s11199-006-8869-6
    1. Silverman I. W. (2010). Simple reaction time: it is not what it used to be. Am. J. Psychol. 123 39–50 10.5406/amerjpsyc.123.1.0039
    1. Vallesi A., Mcintosh A. R., Stuss D. T. (2009). Temporal preparation in aging: a functional MRI study. Neuropsychologia 47 2876–2881 10.1016/j.neuropsychologia.2009.06.013
    1. Vincent A. S., Bleiberg J., Yan S., Ivins B., Reeves D. L., Schwab K., et al. (2008). Reference data from the automated Neuropsychological Assessment Metrics for use in traumatic brain injury in an active duty military sample. Mil. Med. 173 836–852 10.7205/MILMED.173.9.836
    1. Vincent A. S., Roebuck-Spencer T., Gilliland K., Schlegel R. (2012). Automated neuropsychological assessment metrics (v4) traumatic brain injury battery: military normative data. Mil. Med. 177 256–269 10.7205/MILMED-D-11-00289
    1. Wilkinson R. T., Allison S. (1989). Age and simple reaction time: decade differences for 5325 subjects. J. Gerontol. 44 P29–P35 10.1093/geronj/44.2.P29
    1. Woodley M. A., Nijenhuis T., Murphy R. (2013). Were the Victorians cleverer than us? The decline in general intelligence estimated from a meta-analysis of the slowing of simple reaction time. Intelligence 41 843–850 10.1016/j.intell.2013.04.006
    1. Woods D. L., Kishiyama M. M., Yund E. W., Herron T. J., Edwards B., Poliva O., et al. (2011a). Improving digit span assessment of short-term verbal memory. J. Clin. Exp. Neuropsychol. 33 101–111 10.1080/13803395.2010.493149
    1. Woods D. L., Kishiyama M. M., Yund E. W., Herron T. J., Hink R. F., Reed B. (2011b). Computerized analysis of error patterns in digit span recall. J. Clin. Exp. Neuropsychol. 33 721–734 10.1080/13803395.2010.550602
    1. Woods D. L., Wyma J., Yund E. W., Herron T. J., Reed B. (2015). The effects of aging on visual choice reaction time. Front. Hum. Neurosci. (in press).
    1. Yordanova J., Kolev V., Hohnsbein J., Falkenstein M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentials. Brain 127 351–362 10.1093/brain/awh042

Source: PubMed

3
Abonnieren