A randomized controlled trial investigating the impact of maternal dietary supplementation with pomegranate juice on brain injury in infants with IUGR

Madeline M Ross, Sara Cherkerzian, Nicole D Mikulis, Daria Turner, Julian Robinson, Terrie E Inder, Lillian G Matthews, Madeline M Ross, Sara Cherkerzian, Nicole D Mikulis, Daria Turner, Julian Robinson, Terrie E Inder, Lillian G Matthews

Abstract

Animal studies have demonstrated the therapeutic potential of polyphenol-rich pomegranate juice. We recently reported altered white matter microstructure and functional connectivity in the infant brain following in utero pomegranate juice exposure in pregnancies with intrauterine growth restriction (IUGR). This double-blind exploratory randomized controlled trial further investigates the impact of maternal pomegranate juice intake on brain structure and injury in a second cohort of IUGR pregnancies diagnosed at 24-34 weeks' gestation. Ninety-nine mothers and their eligible fetuses (n = 103) were recruited from Brigham and Women's Hospital and randomly assigned to 8 oz pomegranate (n = 56) or placebo (n = 47) juice to be consumed daily from enrollment to delivery. A subset of participants underwent fetal echocardiogram after 2 weeks on juice with no evidence of ductal constriction. 57 infants (n = 26 pomegranate, n = 31 placebo) underwent term-equivalent MRI for assessment of brain injury, volumes and white matter diffusion. No significant group differences were found in brain volumes or white matter microstructure; however, infants whose mothers consumed pomegranate juice demonstrated lower risk for brain injury, including any white or cortical grey matter injury compared to placebo. These preliminary findings suggest pomegranate juice may be a safe in utero neuroprotectant in pregnancies with known IUGR warranting continued investigation.Clinical trial registration: NCT04394910, https://ichgcp.net/clinical-trials-registry/NCT04394910 , Registered May 20, 2020, initial participant enrollment January 16, 2016.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
CONSORT participant flowchart.
Figure 2
Figure 2
Brain injury risk by study arm on mITT and PP analysis. Risk difference and 95% confidence intervals are shown (Placebo = reference). Lines to the left of 0 favor pomegranate juice, i.e. infants randomized to pomegranate juice demonstrate lower risk of brain injury compared with infants randomized to placebo. Lines that do not cross 0 denote a significant difference in risk, p < 0.05. (a) Modified intention-to-treat (mITT) analysis. (b) PP analysis. (c) PP analysis excluding infants born to mothers positive for metabolites at enrollment. CB cerebellum; DGM deep grey matter; GM cortical grey matter; IVH intraventricular hemorrhage; POM pomegranate; WM white matter.
Figure 3
Figure 3
Representative brain MRIs demonstrating Kidokoro injury scoring. T1-weighted coronal slices from six representative infants exposed in utero to pomegranate juice (top row) or placebo (bottom row). (AC) No injury detected—normal scores for gyral maturation, PLIC myelination, extra-axial space/IHD (arrows). (DF) Representative injury categories detected; (D)2 points for WM focal signal abnormality (arrows); (E)—2 points for focal signal abnormality, 1 point for myelination delay, 1 point for gyral maturation delay (arrow), 1 point for IHD (arrow); (F)—1 point for gyral maturation delay, 2 points for IHD, 2 points for lateral ventricle enlargement (arrow). IHD interhemispheric distance; PLIC posterior limb of the internal capsule; WM white matter.

References

    1. Kingdom, J. & Smith, G. in Intrauterine Growth Restriction Aetiology and Management (eds J Kingdom & P Baker) 257–273 (Springer, 2000).
    1. Resnik R. Intrauterine growth restriction. Obstet. Gynecol. 2002;99:490–496.
    1. American College of Obstetricians and Gynecologists. Intrauterine growth restriction. Practice Bulletin no. 12, Washington DC. .
    1. Suhag A, Berghella V. Intrauterine Growth Restriction (IUGR): Etiology and diagnosis. Curr. Obstet. Gynecol. Rep. 2013;2:102–111. doi: 10.1007/s13669-013-0041-z.
    1. von Beckerath AK, et al. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am. J. Obstet. Gynecol. 2013 doi: 10.1016/j.ajog.2012.11.014.
    1. Lodygensky GA, et al. Intrauterine growth restriction affects the preterm infant's hippocampus. Pediatr. Res. 2008;63:438–443. doi: 10.1203/PDR.0b013e318165c005.
    1. Tolsa CB, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr. Res. 2004;56:132–138. doi: 10.1203/01.pdr.0000128983.54614.7e.
    1. Colella M, Frérot A, Novais ARB, Baud O. Neonatal and long-term consequences of fetal growth restriction. Curr. Pediatr. Rev. 2018;14:212–218. doi: 10.2174/1573396314666180712114531.
    1. Levine TA, et al. Early childhood neurodevelopment after intrauterine growth restriction: A systematic review. Pediatrics. 2015;135:126–141. doi: 10.1542/peds.2014-1143.
    1. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016;594:807–823. doi: 10.1113/JP271402.
    1. McIntire DD, Bloom SL, Casey BM, Leveno KJ. birth weight in relation to morbidity and mortality among newborn infants. N. Engl. J. Med. 1999;340:1234–1238. doi: 10.1056/NEJM199904223401603.
    1. Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int. J. Dev. Neurosci. 2011;29:551–563. doi: 10.1016/j.ijdevneu.2011.04.004.
    1. Folkerth RD, et al. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J. Neuropathol. Exp. Neurol. 2004;63:990–999. doi: 10.1093/jnen/63.9.990.
    1. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016;10:67–83. doi: 10.4137/CMPed.S40070.
    1. Seeram NP, et al. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008;56:1415–1422. doi: 10.1021/jf073035s.
    1. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson's disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res. 2008;33:2416–2426. doi: 10.1007/s11064-008-9697-6.
    1. Bastianetto S, Krantic S, Quirion R. Polyphenols as potential inhibitors of amyloid aggregation and toxicity: Possible significance to Alzheimer's disease. Min. Rev. Med. Chem. 2008;8:429–435. doi: 10.2174/138955708784223512.
    1. Esmaillzadeh A, Tahbaz F, Gaieni I, Alavi-Majd H, Azadbakht L. Cholesterol-lowering effect of concentrated pomegranate juice consumption in type II diabetic patients with hyperlipidemia. Int. J. Vitamin Nutr. Res. 2006;76:147–151. doi: 10.1024/0300-9831.76.3.147.
    1. Hong MY, Seeram NP, Heber D. Pomegranate polyphenols down-regulate expression of androgen-synthesizing genes in human prostate cancer cells overexpressing the androgen receptor. J. Nutr. Biochem. 2008;19:848–855. doi: 10.1016/j.jnutbio.2007.11.006.
    1. Mokni M, et al. Resveratrol provides cardioprotection after ischemia/reperfusion injury via modulation of antioxidant enzyme activities. Iran. J. Pharm. Res. IJPR. 2013;12:867–875.
    1. Shema-Didi L, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: A randomized placebo-controlled trial. Free Radical Biol. Med. 2012;53:297–304. doi: 10.1016/j.freeradbiomed.2012.05.013.
    1. Matthews LG, et al. Maternal pomegranate juice intake and brain structure and function in infants with intrauterine growth restriction: A randomized controlled pilot study. PLoS ONE. 2019;14:e0219596. doi: 10.1371/journal.pone.0219596.
    1. Braidy N, et al. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer's disease. Oncotarget. 2016;7:64589–64604. doi: 10.18632/oncotarget.10905.
    1. Kujawska M, et al. Neuroprotective effects of pomegranate juice against parkinson's disease and presence of Ellagitannins-derived metabolite-Urolithin A-in the brain. Int. J. Mol. Sci. 2020 doi: 10.3390/ijms21010202.
    1. Ritz MF, et al. Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J. Nutr. 2008;138:519–525. doi: 10.1093/jn/138.3.519.
    1. Loren DJ, Seeram NP, Schulman RN, Holtzman DM. Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr. Res. 2005;57:858–864. doi: 10.1203/01.PDR.0000157722.07810.15.
    1. West T, Atzeva M, Holtzman DM. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev. Neuroscience. 2007;29:363–372. doi: 10.1159/000105477.
    1. Bellone JA, et al. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial. Nutr. Neurosci. 2019;22:738–743. doi: 10.1080/1028415X.2018.1436413.
    1. Bookheimer SY, et al. Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid. Based Complement Altern. Med. 2013;2013:946298. doi: 10.1155/2013/946298.
    1. Siddarth P, et al. Randomized placebo-controlled study of the memory effects of pomegranate juice in middle-aged and older adults. Am. J. Clin. Nutr. 2020;111:170–177. doi: 10.1093/ajcn/nqz241.
    1. Bubols GB, et al. Nitric oxide and reactive species are modulated in the polyphenol-induced ductus arteriosus constriction in pregnant sheep. Prenat. Diagn. 2013;34:1268–1276. doi: 10.1002/pd.4463.
    1. Zielinsky P, et al. Maternal restriction of polyphenols and fetal ductal dynamics in normal pregnancy: An open clinical trial. Arq. Bras. Cardiol. 2013;101:217–225. doi: 10.5935/abc.20130166.
    1. Zielinsky P, Busato S. Prenatal effects of maternal consumption of polyphenol-rich foods in late pregnancy upon fetal ductus arteriosus. Birth Defects Res. 2013;99:256–274. doi: 10.1002/bdrc.21051.
    1. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am. J. Neuroradiol. 2013;34:2208–2214. doi: 10.3174/ajnr.A352.
    1. Ginsberg Y, et al. Maternal pomegranate juice attenuates maternal inflammation-induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-kappaB in a rat model. Am. J. Obstet. Gynecol. 2018;219(113):e111–113.e119. doi: 10.1016/j.ajog.2018.04.040.
    1. Casedas G, Les F, Choya-Foces C, Hugo M, Lopez V. The metabolite urolithin-A ameliorates oxidative stress in neuro-2a cells, becoming a potential neuroprotective agent. Antioxidants (Basel). 2020 doi: 10.3390/antiox9020177.
    1. Chen B, Longtine MS, Riley JK, Nelson DM. Antenatal pomegranate juice rescues hypoxia-induced fetal growth restriction in pregnant mice while reducing placental cell stress and apoptosis. Placenta. 2018;66:1–7. doi: 10.1016/j.placenta.2018.04.009.
    1. Tuuli MG, et al. A randomized, placebo-controlled, double-blind trial of maternal antenatal pomegranate juice (POM) ingestion and POM effects on placental morphology and function in women diagnosed antenatally with intrauterine growth restriction. Trends Dev. Biol. 2019;12:13–22.
    1. Back SA. Cerebral white and gray matter injury in newborns: New insights into pathophysiology and management. Clin. Perinatol. 2014;41:1–24. doi: 10.1016/j.clp.2013.11.001.
    1. Reich B, Hoeber D, Bendix I, Felderhoff-Mueser U. Hyperoxia and the Immature Brain. Dev Neurosci. 2016;38:311–330. doi: 10.1159/000454917.
    1. McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. J. Neurosci. 2003;23:3308. doi: 10.1523/JNEUROSCI.23-08-03308.2003.
    1. Esteban FJ, et al. Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. Neuroimage. 2010;53:1225–1232. doi: 10.1016/j.neuroimage.2010.07.019.
    1. Padilla N, et al. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: A magnetic resonance imaging study. Brain Res. 2011;1382:98–108. doi: 10.1016/j.brainres.2011.01.032.
    1. Back SA. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol. 2017;134:331–349. doi: 10.1007/s00401-017-1718-6.
    1. Volpe JJ. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–124. doi: 10.1016/s1474-4422(08)70294-1.
    1. Davidson JO, et al. Perinatal brain injury: Mechanisms and therapeutic approaches. Front. Biosci. (Landmark Ed.) 2018;23:2204–2226. doi: 10.2741/4700.
    1. Volpe JJ. Dysmaturation of premature brain: Importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 2019;95:42–66. doi: 10.1016/j.pediatrneurol.2019.02.016.
    1. Matthews LG, et al. Brain growth in the NICU: Critical periods of tissue-specific expansion. Pediatr. Res. 2018;83:976–981. doi: 10.1038/pr.2018.4.
    1. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 2008;9:110–122. doi: 10.1038/nrn2252.
    1. Ball G, et al. Development of cortical microstructure in the preterm human brain. Proc. Natl. Acad. Sci. USA. 2013;110:9541–9546. doi: 10.1073/pnas.1301652110.
    1. Hüppi PS, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann. Neurol. 1998;43:224–235. doi: 10.1002/ana.410430213.
    1. Kapellou O, et al. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med. 2006;3:e265–e265. doi: 10.1371/journal.pmed.0030265.
    1. Dubois J, et al. Primary cortical folding in the human newborn: An early marker of later functional development. Brain. 2008;131:2028–2041. doi: 10.1093/brain/awn137.
    1. Samuelsen GB, et al. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants. Am. J. Obstet. Gynecol. 2007;197(56):e51–57. doi: 10.1016/j.ajog.2007.02.011.
    1. Chun JJ, Nakamura MJ, Shatz CJ. Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature. 1987;325:617–620. doi: 10.1038/325617a0.
    1. Friauf E, Shatz CJ. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J. Neurophysiol. 1991;66:2059–2071. doi: 10.1152/jn.1991.66.6.2059.
    1. Zhao C, Kao JP, Kanold PO. Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J. Neurosci. 2009;29:15479–15488. doi: 10.1523/JNEUROSCI.4471-09.2009.
    1. 59Kinney, H. C. & Volpe, J. J. in Volpe’s Neurology of the Newborn (eds J. J. Volpe et al.) Ch. 7, (Elsevier, 2018).
    1. Sheikh A, et al. Neonatal hypoxia-ischemia causes functional circuit changes in subplate neurons. Cereb. Cortex. 2019;29:765–776. doi: 10.1093/cercor/bhx358.
    1. Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 1990;297:441–470. doi: 10.1002/cne.902970309.
    1. Meinecke DL, Rakic P. Expression of GABA and GABAA receptors by neurons of the subplate zone in developing primate occipital cortex: Evidence for transient local circuits. J. Comp. Neurol. 1992;317:91–101. doi: 10.1002/cne.903170107.
    1. Allendoerfer KL, Shatz CJ. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 1994;17:185–218. doi: 10.1146/annurev.ne.17.030194.001153.
    1. Xu G, et al. Late development of the GABAergic system in the human cerebral cortex and white matter. J. Neuropathol. Exp. Neurol. 2011;70:841–858. doi: 10.1097/NEN.0b013e31822f471c.
    1. Finn-Sell SL, et al. Pomegranate juice supplementation alters utero-placental vascular function and fetal growth in the eNOS(-/-) mouse model of fetal growth restriction. Front. Physiol. 2018;9:1145–1145. doi: 10.3389/fphys.2018.01145.
    1. Panickar KS, Anderson RA. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int. J. Mol. Sci. 2011;12:8181–8207. doi: 10.3390/ijms12118181.
    1. Seeram NP, et al. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J. Nutr. 2006;136:2481–2485. doi: 10.1093/jn/136.10.2481.
    1. Hammerstone JF, Lazarus SA, Schmitz HH. Procyanidin content and variation in some commonly consumed foods. J. Nutr. 2000;130:2086s–2092s. doi: 10.1093/jn/130.8.2086S.
    1. Lacroix S, et al. A computationally driven analysis of the polyphenol-protein interactome. Sci. Rep. 2018;8:2232. doi: 10.1038/s41598-018-20625-5.
    1. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: A sonographic weight standard. Radiology. 1991;181:129–133. doi: 10.1148/radiology.181.1.1887021.
    1. McCormick MC. The contribution of low birth weight to infant mortality and childhood morbidity. N. Engl. J. Med. 1985;312:82–90. doi: 10.1056/nejm198501103120204.
    1. Peleg D, Kennedy CM, Hunter SK. Intrauterine growth restriction: Identification and management. Am. Fam. Phys. 1998;58(453–460):466–457.
    1. Doubilet PM, Benson CB, Nadel AS, Ringer SA. Improved birth weight table for neonates developed from gestations dated by early ultrasonography. J. Ultrasound Med. 1997;16:241–249. doi: 10.7863/jum.1997.16.4.241.
    1. Gynecologists AC. ACOG practice bulletin no. 134: Fetal growth restriction. Obstet. Gynecol. 2013;121:1122–1133. doi: 10.1097/01.AOG.0000429658.85846.f9.
    1. Ben Nasr C, Ayed N, Metche M. Quantitative determination of the polyphenolic content of pomegranate peel. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. 1996;203:374–378. doi: 10.1007/BF01231077.
    1. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.
    1. Beare RJ, et al. Neonatal brain tissue classification with morphological adaptation and unified segmentation. Front. Neuroinf. 2016;10:12. doi: 10.3389/fninf.2016.00012.
    1. Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Rogers CE, et al. Regional white matter development in very preterm infants: Perinatal predictors and early developmental outcomes. Pediatr. Res. 2016;79:87–95. doi: 10.1038/pr.2015.172.
    1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 1978;92:529–534. doi: 10.1016/S0022-3476(78)80282-0.
    1. Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005;115:286–294. doi: 10.1542/peds.2004-0326.
    1. Rao R, et al. Neurodevelopmental outcomes in neonates with mild hypoxic ischemic encephalopathy treated with therapeutic hypothermia. Am. J. Perinatol. 2019;36:1337–1343. doi: 10.1055/s-0038-1676973.
    1. Hammerl M, et al. Supratentorial brain metrics predict neurodevelopmental outcome in very preterm infants without brain injury at age 2 years. Neonatology. 2020;117:287–293. doi: 10.1159/000506836.
    1. Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS. New intrauterine growth curves based on United States data. Pediatrics. 2010;125:e214–224. doi: 10.1542/peds.2009-0913.

Source: PubMed

3
Abonnieren