Analysis of two birth tissues provides new insights into the epigenetic landscape of neonates born preterm

Yonghui Wu, Xinyi Lin, Ives Yubin Lim, Li Chen, Ai Ling Teh, Julia L MacIsaac, Kok Hian Tan, Michael S Kobor, Yap Seng Chong, Peter D Gluckman, Neerja Karnani, Yonghui Wu, Xinyi Lin, Ives Yubin Lim, Li Chen, Ai Ling Teh, Julia L MacIsaac, Kok Hian Tan, Michael S Kobor, Yap Seng Chong, Peter D Gluckman, Neerja Karnani

Abstract

Background: Preterm birth (PTB), defined as child birth before completion of 37 weeks of gestation, is a major challenge in perinatal health care and can bear long-term medical and financial burden. Over a million children die each year due to PTB complications, and those who survive can face developmental delays. Unfortunately, our understanding of the molecular pathways associated with PTB remains limited. There is a growing body of evidence suggesting the role of DNA methylation (DNAm) in mediating the effects of PTB on future health outcomes. Thus, epigenome-wide association studies (EWAS), where DNAm sites are examined for associations with PTB, can help shed light on the biological mechanisms linking the two.

Results: In an Asian cohort of 1019 infants (68 preterm, 951 full term), we examined and compared the associations between PTB and genome-wide DNAm profiles using both cord tissue (n = 1019) and cord blood (n = 332) samples on Infinium HumanMethylation450 arrays. PTB was significantly associated (P < 5.8e-7) with DNAm at 296 CpGs (209 genes) in the cord blood. Over 95% of these CpGs were replicated in other PTB/gestational age EWAS conducted in (cord) blood. This replication was apparent even across populations of different ethnic origin (Asians, Caucasians, and African Americans). More than a third of these 296 CpGs were replicated in at least 4 independent studies, thereby identifying a robust set of PTB-linked epigenetic signatures in cord blood. Interrogation of cord tissue in addition to cord blood provided novel insights into the epigenetic status of the neonates born preterm. Overall, 994 CpGs (608 genes, P < 3.7e-7) associated with PTB in cord tissue, of which only 10 of these CpGs were identified in the analysis using cord blood. Genes from cord tissue showed enrichment of molecular pathways related to fetal growth and development, while those from cord blood showed enrichment of immune response pathways. A substantial number of PTB-associated CpGs from both the birth tissues were also associated with gestational age.

Conclusions: Our findings provide insights into the epigenetic landscape of neonates born preterm, and that its status is captured more comprehensively by interrogation of more than one neonatal tissue in tandem. Both these neonatal tissues are clinically relevant in their unique ways and require careful consideration in identification of biomarkers related to PTB and gestational age.

Trial registration: This birth cohort is a prospective observational study designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .

Keywords: DNA methylation; Epigenome wide association study; Gestational age; Neonate; Preterm birth; Tissue specificity.

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from all women who participated in the study. Approval for the study was granted by the ethics boards of both KK Women’s and Children’s Hospital (KKH) and National University Hospital (NUH), which are the Centralised Institute Review Board (CIRB) and the Domain Specific Review Board (DSRB) respectively.

Consent for publication

Not applicable.

Competing interests

YSC, PDG, and NK have received reimbursement for speaking at conferences sponsored by companies selling nutritional products. They are part of an academic consortium that has received research funding from Abbott Nutrition, Nestec and Danone. The other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Preterm births (PTB) were associated with global alterations in infants’ cord tissue DNA methylation. a Manhattan plot and b volcano plot illustrating the relationship of the 134,676 infant cord tissue CpGs analyzed with respect to PTB. The top 10 CpGs with the smallest P values are indicated on both plots and labeled with the gene it is associated with or CpG identifier if the CpG lies within an intergenic region. Points on each plot represent individual CpGs which in a have genomic locations on the horizontal axis with alternating colors representing different chromosomes and in b have the change in DNA methylation Z-score on the horizontal axis. The red horizontal line in a represents the Bonferroni threshold (P < 3.7 × 10−7). Nine hundred ninety-four infant cord tissue CpGs were found to significantly associate with PTB and are indicated as red points in b. In both plots, the vertical axis represents the negative log10 P values with respect to PTB, adjusted for infant sex, ethnicity, cell-type proportions, bisulfite conversion batch, and DNA extraction batch
Fig. 2
Fig. 2
Preterm births (PTB) were associated with global alterations in infants’ cord blood DNA methylation. a Manhattan plot and b volcano plot illustrating the relationship of the 85,624 infant cord blood CpGs analyzed with respect to PTB. The top 10 CpGs with the smallest P values are indicated on both plots and labeled with the gene it is associated with or CpG identifier if the CpG lies within an intergenic region. Points on each plot represent individual CpGs which in a have genomic locations on the horizontal axis with alternating colors representing different chromosomes and in b have the change in DNA methylation Z-score on the horizontal axis. The red horizontal line in a represents the Bonferroni threshold (P < 5.8 × 10−7). Two hundred ninety-six infant cord blood CpGs were found to significantly associate with PTB and are indicated as red points in b. In both plots, the vertical axis represents the negative log10 P values with respect to preterm birth status, adjusted for infant sex, ethnicity, cell-type proportions, and bisulfite conversion batch
Fig. 3
Fig. 3
Cord blood CpGs previously reported in association with gestational age (GA) or preterm births (PTB). a The Venn diagram shows the relationship between cord blood CpGs previously reported to be significantly associated with gestational age or PTB in relation to PTB-associated CpGs in the current study. b The bar graph shows the reproducibility of the 296 PTB-associated cord blood CpGs in the current study. The vertical axis gives the number of PTB-associated cord blood CpGs in the current study, while the horizontal axis gives the number of earlier GA/PTB epigenome-wide association studies (EWAS) our PTB-associated cord blood CpGs are replicated in. Bar graph colors are representative of the number of earlier studies our PTB-associated CpGs replicated in black (0), green (1), purple (2), orange (3), blue (4), pink (5), and brown (6). c This UpSet plot further breaks down the replication of our PTB-associated CpGs in the earlier studies. Each column represents the number of CpGs, for each unique intersection of the current study (GUSTO) with other studies, as indicated by the gray dot and connecting line. Intersection sets with no CpGs are not shown on the plot
Fig. 4
Fig. 4
a, b REVIGO summarized Gene Ontology Clusters with respect to preterm birth (PTB)-associated CpGs in both cord tissue and cord blood. Gene ontology (GO) enrichment was performed on PTB-associated CpGs in both cord tissue and cord blood for each tissue separately using missMethyl. REVIGO was then used to reclassify the biological process-related enriched GO terms (parent GO term containing under 300 genes, semantic similarity measure between each GO term < 0.7). Cord tissue CpGs had 10 GO clusters from 41 unique GO terms, while cord blood CpGs had 10 GO clusters from 43 unique GO terms. GO clusters with 5 or more genes are represented by the bar graphs, with plots on the left and right corresponding to cord tissue and cord blood respectively. The vertical axis of the bar graphs represents the REVIGO cluster names, while the horizontal axis represents the number of genes in the REVIGO cluster containing at least one significantly associated CpG

References

    1. March of Dimes, PMNCH, Save the Children, WHO . Born too soon: the global action report on preterm birth. Geneva: World Health Organization; 2012.
    1. Preterm birth. .
    1. Huddy CL, Johnson A, Hope PL. Educational and behavioural problems in babies of 32-35 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;85(1):F23–F28.
    1. Wang ML, Dorer DJ, Fleming MP, Catlin EA. Clinical outcomes of near-term infants. Pediatrics. 2004;114(2):372–376.
    1. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–38.
    1. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–535.
    1. Fernando F, Keijser R, Henneman P, van der Kevie-Kersemaekers AM, Mannens MM, van der Post JA, Afink GB, Ris-Stalpers C. The idiopathic preterm delivery methylation profile in umbilical cord blood DNA. BMC Genomics. 2015;16:736.
    1. Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, Dai Y, Saffery R, Doyle LW, Craig JM. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med. 2013;5(10):96.
    1. Parets SE, Conneely KN, Kilaru V, Fortunato SJ, Syed TA, Saade G, Smith AK, Menon R. Fetal DNA methylation associates with early spontaneous preterm birth and gestational age. PLoS One. 2013;8(6):e67489.
    1. de Goede OM, Lavoie PM, Robinson WP. Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns. Clin Epigenetics. 2017;9:39.
    1. Bohlin J, Haberg SE, Magnus P, Reese SE, Gjessing HK, Magnus MC, Parr CL, Page CM, London SJ, Nystad W. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016;17(1):207.
    1. Simpkin AJ, Suderman M, Gaunt TR, Lyttleton O, McArdle WL, Ring SM, Tilling K, Davey Smith G, Relton CL. Longitudinal analysis of DNA methylation associated with birth weight and gestational age. Hum Mol Genet. 2015;24(13):3752–3763.
    1. Menon R, Conneely KN, Smith AK. DNA methylation: an epigenetic risk factor in preterm birth. Reprod Sci. 2012;19(1):6–13.
    1. Parets SE, Conneely KN, Kilaru V, Menon R, Smith AK. DNA methylation provides insight into intergenerational risk for preterm birth in African Americans. Epigenetics. 2015;10(9):784–792.
    1. Burris HH, Braun JM, Byun HM, Tarantini L, Mercado A, Wright RJ, Schnaas L, Baccarelli AA, Wright RO, Tellez-Rojo MM. Association between birth weight and DNA methylation of IGF2, glucocorticoid receptor and repetitive elements LINE-1 and Alu. Epigenomics. 2013;5(3):271–281.
    1. Burris HH, Rifas-Shiman SL, Baccarelli A, Tarantini L, Boeke CE, Kleinman K, Litonjua AA, Rich-Edwards JW, Gillman MW. Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J Dev Orig Health Dis. 2012;3(3):173–181.
    1. Mitsuya K, Singh N, Sooranna SR, Johnson MR, Myatt L. Epigenetics of human myometrium: DNA methylation of genes encoding contraction-associated proteins in term and preterm labor. Biol Reprod. 2014;90(5):98.
    1. Sparrow S, Manning JR, Cartier J, Anblagan D, Bastin ME, Piyasena C, Pataky R, Moore EJ, Semple SI, Wilkinson AG, et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. Transl Psychiatry. 2016;6:e716.
    1. Liu Y, Hoyo C, Murphy S, Huang Z, Overcash F, Thompson J, Brown H, Murtha AP. DNA methylation at imprint regulatory regions in preterm birth and infection. Am J Obstet Gynecol. 2013;208(5):395.
    1. Behnia F, Parets SE, Kechichian T, Yin H, Dutta EH, Saade GR, Smith AK, Menon R. Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth. Am J Obstet Gynecol. 2015;212(4):533.
    1. Schroeder JW, Conneely KN, Cubells JC, Kilaru V, Newport DJ, Knight BT, Stowe ZN, Brennan PA, Krushkal J, Tylavsky FA, et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics. 2011;6(12):1498–1504.
    1. Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, et al. DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol. 2012;41(1):188–199.
    1. Lin X, Teh AL, Chen L, Lim IY, Tan PF, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, et al. Choice of surrogate tissue influences neonatal EWAS findings. BMC Med. 2017;15(1):211.
    1. Knight AK, Craig JM, Theda C, Bækvad-Hansen M, Bybjerg-Grauholm J, Hansen CS, Hollegaard MV, Hougaard DM, Mortensen PB, Weinsheimer SM, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17(1):206.
    1. Simpkin AJ, Suderman M, Howe LD. Epigenetic clocks for gestational age: statistical and study design considerations. Clin Epigenetics. 2017;9:100.
    1. Hoogenraad CC, Eussen BH, Langeveld A, van Haperen R, Winterberg S, Wouters CH, Grosveld F, De Zeeuw CI, Galjart N. The murine CYLN2 gene: genomic organization, chromosome localization, and comparison to the human gene that is located within the 7q11.23 Williams syndrome critical region. Genomics. 1998;53(3):348–358.
    1. van Hagen JM, van der Geest JN, van der Giessen RS, Lagers-van Haselen GC, Eussen HJ, Gille JJ, Govaerts LC, Wouters CH, de Coo IF, Hoogenraad CC, et al. Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams syndrome. Neurobiol Dis. 2007;26(1):112–124.
    1. Vandeweyer G, Van der Aa N, Reyniers E, Kooy RF. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. Am J Hum Genet. 2012;90(6):1071–1078.
    1. Johnson LD, Jameson SC. Immunology. A chronic need for IL-21. Science. 2009;324(5934):1525–1526.
    1. Mottis A, Mouchiroud L, Auwerx J. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 2013;27(8):819–835.
    1. Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, Bernath A, Bashir T, Benavides-Serrato A, Gera J. Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress. Cell Signal. 2012;24(1):309–315.
    1. Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70(15):2657–2675.
    1. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 1999;19(2):1262–1270.
    1. Gan X, Wang J, Wang C, Sommer E, Kozasa T, Srinivasula S, Alessi D, Offermanns S, Simon MI, Wu D. PRR5L degradation promotes mTORC2-mediated PKC-delta phosphorylation and cell migration downstream of Galpha12. Nat Cell Biol. 2012;14(7):686–696.
    1. Tokumura A, Kanaya Y, Miyake M, Yamano S, Irahara M, Fukuzawa K. Increased production of bioactive lysophosphatidic acid by serum lysophospholipase D in human pregnancy. Biol Reprod. 2002;67(5):1386–1392.
    1. Tokumura A, Fukuzawa K, Yamada S, Tsukatani H. Stimulatory effect of lysophosphatidic acids on uterine smooth muscles of non-pregant rats. Arch Int Pharmacodyn Ther. 1980;245(1):74–83.
    1. Ye X, Chun J. Lysophosphatidic acid (LPA) signaling in vertebrate reproduction. Trends Endocrinol Metab. 2010;21(1):17–24.
    1. Cho MK, Kim WD, Ki SH, Hwang JI, Choi S, Lee CH, Kim SG. Role of Galpha12 and Galpha13 as novel switches for the activity of Nrf2, a key antioxidative transcription factor. Mol Cell Biol. 2007;27(17):6195–6208.
    1. Foster HA, Davies J, Pink RC, Turkcigdem S, Goumenou A, Carter DR, Saunders NJ, Thomas P, Karteris E. The human myometrium differentially expresses mTOR signalling components before and during pregnancy: evidence for regulation by progesterone. J Steroid Biochem Mol Biol. 2014;139:166–172.
    1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.
    1. Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem. 1998;273(10):5808–5814.
    1. Nakano H, Oshima H, Chung W, Williams-Abbott L, Ware CF, Yagita H, Okumura K. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J Biol Chem. 1996;271(25):14661–14664.
    1. Xiong Y, Wang C, Shi L, Wang L, Zhou Z, Chen D, Wang J, Guo H. Myosin light chain kinase: a potential target for treatment of inflammatory diseases. Front Pharmacol. 2017;8:292.
    1. Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12.
    1. Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 1998;12(15):2269–2277.
    1. Hoberg JE, Yeung F, Mayo MW. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell. 2004;16(2):245–255.
    1. Wang L, Wildt KF, Castro E, Xiong Y, Feigenbaum L, Tessarollo L, Bosselut R. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity. 2008;29(6):876–887.
    1. Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8(6):584–591.
    1. Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604.
    1. Tissot C, Mechti N. Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression. J Biol Chem. 1995;270(25):14891–14898.
    1. Wan Y, Xiao H, Affolter J, Kim TW, Bulek K, Chaudhuri S, Carlson D, Hamilton T, Mazumder B, Stark GR, et al. Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J Biol Chem. 2009;284(16):10367–10375.
    1. Chan W, Schaffer TB, Pomerantz JL. A quantitative signaling screen identifies CARD11 mutations in the CARD and LATCH domains that induce Bcl10 ubiquitination and human lymphoma cell survival. Mol Cell Biol. 2013;33(2):429–443.
    1. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A. 1995;92(24):11259–11263.
    1. Keniry M, Dearth RK, Persans M, Parsons R. New frontiers for the NFIL3 bZIP transcription factor in cancer, metabolism and beyond. Discoveries (Craiova) 2014;2(2):e15.
    1. Zhang W, Zhang J, Kornuc M, Kwan K, Frank R, Nimer SD. Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol Cell Biol. 1995;15(11):6055–6063.
    1. Ikushima S, Inukai T, Inaba T, Nimer SD, Cleveland JL, Look AT. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A. 1997;94(6):2609–2614.
    1. Kumar N, Nandula P, Menden H, Jarzembowski J, Sampath V, Placental TLR. NLR expression signatures are altered with gestational age and inflammation. J Matern Fetal Neonatal Med. 2017;30(13):1588–1595.
    1. Podesta M, Bruschettini M, Cossu C, Sabatini F, Dagnino M, Romantsik O, Spaggiari GM, Ramenghi LA, Frassoni F. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples. PLoS One. 2015;10(9):e0138680.
    1. Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A, Kola I. Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature. 1996;379(6565):534–537.
    1. Zhao C, Meng A. Sp1-like transcription factors are regulators of embryonic development in vertebrates. Develop Growth Differ. 2005;47(4):201–211.
    1. Eidem HR, Rinker DC, WET A, Buhimschi IA, Buhimschi CS, Dunn-Fletcher C, Kallapur SG, Pavlicev M, Muglia LJ, Abbot P, et al. Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects. Placenta. 2016;41:74–82.
    1. Enquobahrie DA, Williams MA, Qiu C, Muhie SY, Slentz-Kesler K, Ge Z, Sorenson T. Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study. BMC Pregnancy Childbirth. 2009;9:56.
    1. Mannstadt M, Juppner H, Gardella TJ. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Phys. 1999;277(5 Pt 2):F665–F675.
    1. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–899.
    1. Edman K, Furber M, Hemsley P, Johansson C, Pairaudeau G, Petersen J, Stocks M, Tervo A, Ward A, Wells E, et al. The discovery of MMP7 inhibitors exploiting a novel selectivity trigger. ChemMedChem. 2011;6(5):769–773.
    1. Munoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ss-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol. 2015;47-48:101–109.
    1. Cunningham TJ, Kumar S, Yamaguchi TP, Duester G. Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn. 2015;244(6):797–807.
    1. Lako M, Strachan T, Bullen P, Wilson DI, Robson SC, Lindsay S. Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene. 1998;219(1–2):101–110.
    1. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341(1):126–140.
    1. Soh S-E, Tint MT, Gluckman PD, Godfrey KM, Rifkin-Graboi A, Chan YH, Stünkel W, Holbrook JD, Kwek K, Chong Y-S, et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol. 2014;43(5):1401–1409.
    1. Pan H, Chen L, Dogra S, Teh AL, Tan JH, Lim YI, Lim YC, Jin S, Lee YK, Ng PY, et al. Measuring the methylome in clinical samples: improved processing of the Infinium Human Methylation450 BeadChip Array. Epigenetics. 2012;7(10):1173–1187.
    1. Johnson WE, Rabinovic A, Li C. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127.
    1. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–209.
    1. Price ME, Cotton AM, Lam LL, Farre P, Emberly E, Brown CJ, Robinson WP, Kobor MS. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin. 2013;6(1):4.
    1. Meng H, Joyce AR, Adkins DE, Basu P, Jia Y, Li G, Sengupta TK, Zedler BK, Murrelle EL, van den Oord EJ. A statistical method for excluding non-variable CpG sites in high-throughput DNA methylation profiling. BMC Bioinformatics. 2010;11:227.
    1. Chen J, Just AC, Schwartz J, Hou L, Jafari N, Sun Z, Kocher JP, Baccarelli A, Lin X. CpGFilter: model-based CpG probe filtering with replicates for epigenome-wide association studies. Bioinformatics. 2016;32(3):469–471.
    1. Lin X, Tan JYL, Teh AL, Lim IY, Liew SJ, MacIsaac JL, Chong YS, Gluckman PD, Kobor MS, Cheong CY, et al. Cell type-specific DNA methylation in neonatal cord tissue and cord blood: a 850K-reference panel and comparison of cell types. Epigenetics. 2018, in press. 10.1080/15592294.2018.1522929.
    1. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–288.
    1. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
    1. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–883.
    1. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–739.

Source: PubMed

3
Abonnieren