Computational Modeling of Glucose Uptake in the Enterocyte

Nima Afshar, Soroush Safaei, David P Nickerson, Peter J Hunter, Vinod Suresh, Nima Afshar, Soroush Safaei, David P Nickerson, Peter J Hunter, Vinod Suresh

Abstract

Absorption of glucose across the epithelial cells of the small intestine is a key process in human nutrition and initiates signaling cascades that regulate metabolic homeostasis. Validated and predictive mathematical models of glucose transport in intestinal epithelial cells are essential for interpreting experimental data, generating hypotheses, and understanding the contributions of and interactions between transport pathways. Here we report on the development of such a model that, in contrast to existing models, incorporates mechanistic descriptions of all relevant transport proteins and is implemented in the CellML framework. The model is validated against experimental and simulation data from the literature. It is then used to elucidate the relative contributions of the sodium-glucose cotransporter (SGLT1) and the glucose transporter type 2 (GLUT2) proteins in published measurements of glucose absorption from human intestinal epithelial cell lines. The model predicts that the contribution of SGLT1 dominates at low extracellular glucose concentrations (<20 mM) and short exposure times (<60 s) while the GLUT2 contribution is more significant at high glucose concentrations and long durations. Implementation in CellML permitted a modular structure in which the model was composed by reusing existing models of the individual transporters. The final structure also permits transparent changes of the model components and parameter values in order to facilitate model reuse, extension, and customization (for example, to simplify, or add complexity to specific transporter/pathway models, or reuse the model as a component of a larger framework) and carry out parameter sensitivity studies.

Keywords: CellML; GLUT2; OpenCOR; SGLT1; computational modeling; glucose uptake.

Figures

Figure 1
Figure 1
Schematic of enterocyte showing the relevant transporters in the apical and basolateral membrane along with the apical (lumen) and basolateral (interstitium) extracellular domains.
Figure 2
Figure 2
Figure shows the modularity of CellML model. Encapsulation hierarchy (purple), the CellML model imports (blue) and the other key parts (units, parameters, components and mappings) of the top level CellML model.
Figure 3
Figure 3
Dynamic response of the model to an extracellular glucose stimulus. The stimulus consists of a step increase followed by an exponential decay (A). Apical and basolateral membrane potentials (B), transepithelial potential (C), and intracellular concentrations of glucose (D), sodium (E), potassium (F), chloride (G), and pH (H) are shown.
Figure 4
Figure 4
Comparison of model responses against the model of Thorsen et al. (2014). Each variable has been normalized against the corresponding steady value from the Thorsen model. (A) Apical glucose stimulus. (B,C) Apical and basolateral membrane potential respectively. (D) Transepithelial potential. (E–H) Sodium, potassium, chloride and glucose intracellular concentration.
Figure 5
Figure 5
Intracellular glucose concentrations for a range of extracellular glucose concentrations in Caco2 and IEC6 cells and exposure times (A: 30 s, B: 60 s, C: 300 s, D: 600 s). Experimental data points and error bars were digitally extracted from Zheng et al. (2012). Strips for the model predictions represent the range of values generated by setting Vb = mVc, m = 0.1, 1, 10, 100, ∞.
Figure 6
Figure 6
Intracellular glucose concentration vs. extracellular glucose concentration in Caco2 in the presence/absence of Apical GLUT2 with different number of SGLT1 transporter (A) Output of model with apical GLUT2 (B) Model does not have apical GLUT2 (C) model does not have apical GLUT2 and the number of SGLT1 is doubled (D) model does not have apical GLUT2 and the number of SGLT1 is 3-fold higher. Experimental data points and error bars were digitally extracted from Zheng et al. (2012). Strips for the model predictions represent the range of values generated by setting Vb = mVc, m = 0.1, 1, 10, 100, ∞.
Figure 7
Figure 7
Glucose Flux through SGLT1 and GLUT2 in 600 s of simulation along with total apical flux of glucose.
Figure 8
Figure 8
Normalized steady state basolateral glucose flux vs. different stimulus of glucose in the lumen when number of SGLT1 is 3-fold higher(green), number of GLUT2 is 3-fold higher(blue) and number of both SGLT1 & GLUT2 are 3-fold higher(red).
Figure 9
Figure 9
(A) Ratio of sodium flux and Chloride flux through NHE3 and AE1 compare to NaCl co-transporter flux in the Thorsen model. (B) Chloride flux through CFTR and chloride diffusion ratio compare to the ration of sodium flux through ENaC and sodium diffusion.
Figure 10
Figure 10
Model output—Intracellular glucose concentration vs. Extracellular glucose concentration in (A) Caco2 cell line and (B) IEC6 cell line.

References

    1. Barrett K. E., Keely S. J. (2015). Electrolyte secretion and absorption in the small intestine and colon, in Yamada's Textbook of Gastroenterology, eds Podolsky D. K., Camilleri M., Fitz J. G., Kalloo A. N., Shanahan F., Wang T. C. (New Jersey, NJ: John Wiley & Sons, Ltd.), 420–449. 10.1002/9781444303254.ch14
    1. Burant C. F., Flink S., DePaoli A. M., Chen J., Lee W. S., Hediger M. A., et al. . (1994). Small intestine hexose transport in experimental diabetes. Increased transporter mrna and protein expression in enterocytes. J. Clin. Invest. 93, 578–585.
    1. Buschmann R. J., Manke D. J. (1981). Morphometric analysis of the membranes and organelles of small intestinal enterocytes. i. fasted hamster. J. Ultra. Res. 76, 1–14. 10.1016/S0022-5320(81)80046-9
    1. Crowe P. T., Marsh M. N. (1993). Morphometric analysis of small intestinal mucosa iv. determining cell volumes. Virchows Archiv. A 422, 459–466. 10.1007/BF01606454
    1. Cuellar A. A., Lloyd C. M., Nielsen P. F., Bullivant D. P., Nickerson D. P., Hunter P. J. (2003). An overview of cellml 1.1, a biological model description language. Simulation 79, 740–747. 10.1177/0037549703040939
    1. Dyer J., Garner A., Wood I., Sharma A., Chandranath I., Shirazi-Beechey S. (1997). Changes in the levels of intestinal na+/glucose co-transporter (sglt1) in experimental diabetes. Biochem. Soc. Trans. 25:479S.
    1. Dyer J., Wood I., Palejwala A., Ellis A., Shirazi-Beechey S. (2002). Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol. Gastroint. Liver Physiol. 282, G241–G248. 10.1152/ajpgi.00310.2001
    1. Fedorak R. N., Cheeseman C. I., Thomson A., Porter V. M. (1991). Altered glucose carrier expression: mechanism of intestinal adaptation during streptozocin-induced diabetes in rats. Am. J. Physiol. Gastroint. Liver Physiol. 261, G585–G591. 10.1152/ajpgi.1991.261.4.G585
    1. Fong S., Chiorini J. A., Sneyd J., Suresh V. (2016). Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1. Am. J. Physiol. Gastroint. Liver Physiol. 312, G153–G163. 10.1152/ajpgi.00374.2016
    1. Frizzell R. A., Nellans H. N., Rose R. C., Markscheid-Kaspi L., Schultz S. G. (1973). Intracellular cl concentrations and influxes across the brush border of rabbit ileum. Am. J. Physiol. Legacy Content 224, 328–337.
    1. Garny A., Hunter P. J. (2015). Opencor: a modular and interoperable approach to computational biology. Front. Physiol. 6:26. 10.3389/fphys.2015.00026
    1. Gorboulev V., Schürmann A., Vallon V., Kipp H., Jaschke A., Klessen D., et al. . (2012). Na+-d-glucose cotransporter sglt1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196. 10.2337/db11-1029
    1. Hunter P. J., Borg T. K. (2003). Integration from proteins to organs: the physiome project. Nat. Rev. Mol. Cell Biol. 4:237. 10.1038/nrm1054
    1. Ingalls B. (2012). Mathematical modelling in systems biology: an introduction. Appl. Math. Univ. Waterloo 396, 1–15.
    1. Kellett G. L. (2012). Comment on: Gorboulev et al. na+-d-glucose cotransporter sglt1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, e4–e5. 10.2337/db11-1793
    1. Kellett G. L., Brot-Laroche E. (2005). Apical glut2: a major pathway of intestinal sugar absorption. Diabetes 54, 3056–3062. 10.2337/diabetes.54.10.3056
    1. Kellett G. L., Helliwell P. A. (2000). The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of glut2 to the brush-border membrane. Biochem. J. 350, 155–162. 10.1042/bj3500155
    1. Koepsell H., Gorboulev V. (2012). Response to comment on: Gorboulev et al. na+-d-glucose cotransporter sglt1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, e5–e5. 10.2337/db12-0061
    1. König M., Bulik S., Holzhütter H.-G. (2012). Quantifying the contribution of the liver to glucose homeostasis: a detailed kinetic model of human hepatic glucose metabolism. PLoS Comput. Biol. 8:e1002577. 10.1371/journal.pcbi.1002577
    1. MacLeod R. J., Hamilton J., Bateman A., Belcourt D., Hu J., Bennett H., Solomon S. (1991). Corticostatic peptides cause nifedipine-sensitive volume reduction in jejunal villus enterocytes. Proc. Natl. Acad. Sci. U.S.A. 88, 552–556. 10.1073/pnas.88.2.552
    1. Milo R. (2013). What is the total number of protein molecules per cell volume? a call to rethink some published values. Bioessays 35, 1050–1055. 10.1002/bies.201300066
    1. Nellans H. N., Frizzell R. A., Schultz S. G. (1973). Coupled sodium-chloride influx across the brush border of rabbit ileum. Am. J. Physiol. Legacy Content 225, 467–475.
    1. Nellans H. N., Schultz S. G. (1976). Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J. Gen. Physiol. 68, 441–463.
    1. Nickerson D. P., Ladd D., Hussan J. R., Safaei S., Suresh V., Hunter P. J., et al. . (2015). Using cellml with opencmiss to simulate multi-scale physiology. Front. Bioeng. Biotechnol. 2:79. 10.3389/fbioe.2014.00079
    1. Noonan W. T., Woo A. L., Nieman M. L., Prasad V., Schultheis P. J., Shull G. E., et al. . (2005). Blood pressure maintenance in nhe3-deficient mice withtransgenic expression of nhe3 in small intestine. Am. J. Physiol. Regul. Integrat. Compar. Physiol. 288, R685–R691. 10.1152/ajpregu.00209.2004
    1. Okada Y., Irimajiri A., Inouye A. (1976). Intracellular ion concentrations of epithelial cells in rat small intestine effects of external potassium ions and uphill transports of glucose and glycine. Jap. J. Physiol. 26, 427–440.
    1. Østby I., Øyehaug L., Einevoll G. T., Nagelhus E. A., Plahte E., Zeuthen T., et al. . (2009). Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol. 5:e1000272. 10.1371/journal.pcbi.1000272
    1. Palk L., Sneyd J., Shuttleworth T. J., Yule D. I., Crampin E. J. (2010). A dynamic model of saliva secretion. J. Theor. Biol. 266, 625–640. 10.1016/j.jtbi.2010.06.027
    1. Palumbo P., Ditlevsen S., Bertuzzi A., De Gaetano A. (2013). Mathematical modeling of the glucose–insulin system: a review. Math. Biosci. 244, 69–81. 10.1016/j.mbs.2013.05.006
    1. Parent L., Supplisson S., Loo D. D., Wright E. M. (1992). Electrogenic properties of the cloned na+/glucose cotransporter: Ii. a transport model under nonrapid equilibrium conditions. J. Membr. Biol. 125, 63–79.
    1. Pradhan R. K., Vinnakota K. C., Beard D. A., Dash R. K. (2013). Chapter 5: Carrier-mediated Transport Through Biomembranes (Elsevier: ).
    1. Riz M., Pedersen M. G. (2015). Mathematical modeling of interacting glucose-sensing mechanisms and electrical activity underlying glucagon-like peptide 1 secretion. PLoS Comput. Biol. 11:e1004600. 10.1371/journal.pcbi.1004600
    1. Röder P. V., Geillinger K. E., Zietek T. S., Thorens B., Koepsell H., Daniel H. (2014). The role of sglt1 and glut2 in intestinal glucose transport and sensing. PLoS ONE 9:e89977. 10.1371/journal.pone.0089977
    1. Rose R. C., Schultz S. G. (1971). Studies on the electrical potential profile across rabbit ileum. J. Gen. Physiol. 57, 639–663. 10.1085/jgp.57.6.639
    1. Schedl H. P., Wilson H. D. (1971). Effects of diabetes on intestinal growth in the rat. J. Exp. Zool. 176, 487–495. 10.1002/jez.1401760410
    1. Schultheis P. J., Clarke L. L., Meneton P., Miller M. L., Soleimani M., Gawenis L. R., et al. . (1998). Renal and intestinal absorptive defects in mice lacking the nhe3 na+/h+ exchanger. Nat. Genet. 19:282. 10.1038/969
    1. Scow J. S., Tavakkolizadeh A., Zheng Y., Sarr M. G. (2011). Acute “adaptation” by the small intestinal enterocyte: a posttranscriptional mechanism involving apical translocation of nutrient transporters. Surgery 149, 601–605. 10.1016/j.surg.2011.02.001
    1. Shimada T., Hoshi T. (1987). Role of na+/h+ antiport in intracellular ph regulation by rabbit enterocytes. Biochim. Biophys. Acta 901, 265–272. 10.1016/0005-2736(87)90123-4
    1. Thorsen K., Drengstig T., Ruoff P. (2014). Transepithelial glucose transport and na+/k+ homeostasis in enterocytes: an integrative model. Am. J. Physiol. Cell Physiol. 307, C320–C337. 10.1152/ajpcell.00068.2013
    1. Vogalis F. (2000). Potassium channels in gastrointestinal smooth muscle. J. Auton. Pharmacol. 20, 207–219.
    1. Weinstein A. M. (1995). A kinetically defined na+/h+ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105, 617–641.
    1. Weinstein A. M. (2000). A mathematical model of the outer medullary collecting duct of the rat. Am. J. Physiol. Renal Physiol. 279, F24–F45. 10.1152/ajprenal.2000.279.1.F24
    1. Weinstein A. M. (2015). A mathematical model of the rat nephron: glucose transport. Am. J. Physiol. Renal Physiol. 308, F1098–F1118. 10.1152/ajprenal.00505.2014
    1. Yu T., Lloyd C. M., Nickerson D. P., Cooling M. T., Miller A. K., Garny A., et al. . (2011). The physiome model repository 2. Bioinformatics 27, 743–744. 10.1093/bioinformatics/btq723
    1. Zheng Y., Scow J. S., Duenes J. A., Sarr M. G. (2012). Mechanisms of glucose uptake in intestinal cell lines: role of glut2. Surgery 151, 13–25. 10.1016/j.surg.2011.07.010

Source: PubMed

3
Abonnieren