Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

Lindsay B Baker, Ian Rollo, Kimberly W Stein, Asker E Jeukendrup, Lindsay B Baker, Ian Rollo, Kimberly W Stein, Asker E Jeukendrup

Abstract

Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game seems to have the greatest impact on intermittent sports performance towards the end of the game.

Keywords: glucose; glycogen; intermittent exercise capacity; skill; sprinting; team sports.

References

    1. Holway F.E., Spriet L.L. Sport-specific nutrition: Practical strategies for team sports. J. Sports Sci. 2011;29(Suppl. S1):S115–S125. doi: 10.1080/02640414.2011.605459.
    1. Burke L.M., Hawley J.A., Wong S.H., Jeukendrup A.E. Carbohydrates for training and competition. J. Sports Sci. 2011;29(Suppl. S1):S17–S27. doi: 10.1080/02640414.2011.585473.
    1. Rodriguez N.R., DiMarco N.M., Langley S. Joint position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet Assoc. 2009;109:509–527.
    1. Mujika I., Burke L.M. Nutrition in team sports. Ann. Nutr. Metab. 2010;57(Suppl. S2):26–35. doi: 10.1159/000322700.
    1. Ranchordas M.K., Rogerson D., Ruddock A., Killer S.C., Winter E.M. Nutrition for tennis: Practical recommendations. J. Sports Sci. Med. 2013;12:211–224.
    1. Russell M., Kingsley M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014;44:957–970. doi: 10.1007/s40279-014-0184-8.
    1. Phillips S.M. Carbohydrate supplementation and prolonged intermittent high-intensity exercise in adolescents: Research findings, ethical issues and suggestions for the future. Sports Med. 2012;42:817–828. doi: 10.1007/BF03262296.
    1. Kirsch G.B. The Creation of American Team Sports: Baseball and Cricket. University of Illinois Press; Champaign, IL, USA: 1989. p. 227.
    1. Taylor M. The Association Game: A History of British Football. Routledge; Abingdon, UK: 2013. Early years, c. 1863–1885; pp. 19–61.
    1. Rampinini E., Impellizzeri F.M., Castagna C., Coutts A.J., Wisloff U. Technical performance during soccer matches of the Italian Serie A League: Effect of fatigue and competitive level. J. Sci. Med. Sport. 2009;12:227–233. doi: 10.1016/j.jsams.2007.10.002.
    1. Unnithan V., White J., Georgiou A., Iga J., Drust B. Talent identification in youth soccer. J. Sports Sci. 2012;30:1719–1726. doi: 10.1080/02640414.2012.731515.
    1. Sheppard J.M., Young W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006;24:919–932. doi: 10.1080/02640410500457109.
    1. Young W.B., James R., Montgomery I. Is muscle power related to running speed with changes of direction? J. Sports Med. Phys. Fit. 2002;42:282–288.
    1. Russell M., Sparkes W., Northeast J., Cook C.J., Love T.D., Bracken R.M., Kilduff L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2014 doi: 10.1519/JSC.0000000000000805.
    1. Mohr M., Krustrup P., Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003;21:519–528. doi: 10.1080/0264041031000071182.
    1. Gordon B., Kohn L.A., Levine S.A., Malton M., Soriven W., Whiting W.B. Sugar content of the blood in runners following a marathon race. J. Am. Med. Assoc. 1925;85:508–509. doi: 10.1001/jama.1925.02670070028009.
    1. Cade J.R., Free H.J., De Quesada A.M., Shires D.L., Roby L. Changes in body fluid composition and volume during vigorous exercise by athletes. J. Sports Med. Phys. Fit. 1971;11:172–178.
    1. Cade R., Spooner G., Schlein E., Pickering M., Dean R. Effect of fluid, electrolyte, and glucose replacement during exercise on performance, body temperature, rate of sweat loss, and compositional changes of extracellular fluid. J. Sports Med. Phys. Fit. 1972;12:150–156.
    1. Saltin B. Metabolic fundamentals in exercise. Med. Sci. Sports. 1973;5:137–146. doi: 10.1249/00005768-197323000-00010.
    1. Agnevik G. Fotball: Indrottsfysiologi. Trygg-Hansa; Stockholm, Sweeden: 1970.
    1. Reilly T., Thomas V. A time motion analysis of work rate in different positional roles in professional match play. J. Hum. Mov. Stud. 1976;2:87–99.
    1. Mohr M., Krustrup P., Bangsbo J. Fatigue in soccer: A brief review. J. Sports Sci. 2005;23:593–599. doi: 10.1080/02640410400021286.
    1. Mohr M., Krustrup P., Andersson H., Kirkendal D., Bangsbo J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008;22:341–349. doi: 10.1519/JSC.0b013e318165fef6.
    1. Paul D.J., Bradley P.S., Nassis G.P. Factors affecting match running performance of elite soccer players: Shedding some light on the complexity. Int. J Sports Physiol. Perform. 2015;10:516–519. doi: 10.1123/IJSPP.2015-0029.
    1. Bangsbo J., Mohr M., Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006;24:665–674. doi: 10.1080/02640410500482529.
    1. Nevill A.M., Jones D.A., McIntyre D., Bogdanis G.C., Nevill M.E. A model for phosphocreatine resynthesis. J. Appl. Physiol. 1997;82:329–335.
    1. Cheetham M.E., Boobis L.H., Brooks S., Williams C. Human muscle metabolism during sprint running. J. Appl. Physiol. 1986;61:54–60.
    1. Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993;75:712–719.
    1. Krustrup P., Mohr M., Steensberg A., Bencke J., Kjaer M., Bangsbo J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006;38:1165–1174. doi: 10.1249/.
    1. Greenhaff P.L., Nevill M.E., Soderlund K., Bodin K., Boobis L.H., Williams C., Hultman E. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J. Physiol. 1994;478:149–155. doi: 10.1113/jphysiol.1994.sp020238.
    1. Saltin B. Substrate metabolism of the skeletal musculature during exercise. 5. Muscle glycogen. Lakartidningen. 1972;69:1637–1640.
    1. Nicholas C.W., Nuttall F.E., Williams C. The Loughborough Intermittent Shuttle Test: A field test that simulates the activity pattern of soccer. J. Sports Sci. 2000;18:97–104. doi: 10.1080/026404100365162.
    1. Nicholas C.W., Tsintzas K., Boobis L., Williams C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med. Sci. Sports Exerc. 1999;31:1280–1286. doi: 10.1097/00005768-199909000-00008.
    1. Kirkendall D.T., Foster C., Dean J., Grogan J., Thompson N. Effect of a glucose polymer supplementation on performance of soccer players. In: Reilly T., Lees A., David K., Murphy W., editors. Science and Football Proceedings of the First World Congress of Science and Football. Routledge; New York, NY, USA: 1988. pp. 33–41.
    1. Gregson W., Drust B., Atkinson G., Salvo V.D. Match-to-match variability of high-speed activities in premier league soccer. Int. J. Sports Med. 2010;31:237–242. doi: 10.1055/s-0030-1247546.
    1. Bendiksen M., Bischoff R., Randers M.B., Mohr M., Rollo I., Suetta C., Bangsbo J., Krustrup P. The Copenhagen Soccer Test: Physiological response and fatigue development. Med. Sci. Sports Exerc. 2012;44:1595–1603. doi: 10.1249/MSS.0b013e31824cc23b.
    1. Bangsbo J. The physiology of soccer-With special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994;619:1–155.
    1. Nielsen J., Holmberg H.C., Schroder H.D., Saltin B., Ortenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: Role of subcellular localization and fibre type. J. Physiol. 2011;589:2871–2885. doi: 10.1113/jphysiol.2010.204487.
    1. Gejl K.D., Hvid L.G., Frandsen U., Jensen K., Sahlin K., Ortenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med. Sci. Sports Exerc. 2014;46:496–505. doi: 10.1249/MSS.0000000000000132.
    1. Foskett A., Williams C., Boobis L., Tsintzas K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med. Sci. Sports Exerc. 2008;40:96–103. doi: 10.1249/mss.0b013e3181586b2c.
    1. Russell M., Benton D., Kingsley M. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations. J. Athl. Train. 2014;49:447–453. doi: 10.4085/1062-6050-49.3.12.
    1. Coyle E.F., Coggan A.R., Hemmert M.K., Ivy J.L. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 1986;61:165–172.
    1. Bangsbo J. Physiological demands. In: Ekblom B., editor. IOC Handbook of Sports Medicine and Science: Football (Soccer) 1st ed. Blackwell Scientific Publications; Oxford, UK: 1994. pp. 43–58.
    1. Ekblom B. Applied physiology of soccer. Sports Med. 1986;3:50–60. doi: 10.2165/00007256-198603010-00005.
    1. Kjaer M. Regulation of hormonal and metabolic responses during exercise in humans. Exerc. Sport Sci. Rev. 1992;20:161–184.
    1. Kjaer M. Epinephrine and some other hormonal responses to exercise in man: With special reference to physical training. Int. J. Sports Med. 1989;10:2–15. doi: 10.1055/s-2007-1024866.
    1. Kingsley M., Penas-Ruiz C., Terry C., Russell M. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. J. Sci. Med. Sport. 2014;17:239–243. doi: 10.1016/j.jsams.2013.04.010.
    1. Russell M., Benton D., Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport. 2012;15:348–354. doi: 10.1016/j.jsams.2011.12.006.
    1. Russell M., Rees G., Benton D., Kingsley M. An exercise protocol that replicates soccer match-play. Int. J. Sports Med. 2011;32:511–518. doi: 10.1055/s-0031-1273742.
    1. Nicholas C.W., Williams C., Lakomy H.K., Phillips G., Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J. Sports Sci. 1995;13:283–290. doi: 10.1080/02640419508732241.
    1. Harper L.D., Briggs M.A., McNamee G., West D.J., Kilduff L.P., Stevenson E., Russell M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport. 2015 doi: 10.1016/j.jsams.2015.06.009.
    1. Rollo I. Carbohydrate: The football fuel. [(accessed on 24 June 2015)];GSSI Sports Sci. Exch. 2014 27:1–8. Available online: .
    1. Ali A., Williams C., Nicholas C.W., Foskett A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med. Sci. Sports Exer. 2007;39:1969–1976. doi: 10.1249/mss.0b013e31814fb3e3.
    1. McRae K.A., Galloway S.D. Carbohydrate-electrolyte drink ingestion and skill performance during and after 2 hr of indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2012;22:38–46.
    1. Ali A., Williams C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J. Sports Sci. 2009;27:1499–1508. doi: 10.1080/02640410903334772.
    1. Welsh R.S., Davis J.M., Burke J.R., Williams H.G. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med. Sci. Sports Exerc. 2002;34:723–731. doi: 10.1097/00005768-200204000-00025.
    1. Bandelow S., Maughan R., Shirreffs S., Ozgunen K., Kurdak S., Ersoz G., Binnet M., Dvorak J. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand. J. Med. Sci. Sports. 2010;20(Suppl. S3):148–160. doi: 10.1111/j.1600-0838.2010.01220.x.
    1. Duelli R., Kuschinsky W. Brain glucose transporters: Relationship to local energy demand. News Physiol. Sci. 2001;16:71–76.
    1. Tsintzas K., Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25:7–23. doi: 10.2165/00007256-199825010-00002.
    1. Nybo L. CNS fatigue and prolonged exercise: Effect of glucose supplementation. Med. Sci. Sports Exerc. 2003;35:589–594. doi: 10.1249/01.MSS.0000058433.85789.66.
    1. Ali A. Measuring soccer skill performance: A review. Scand. J. Med. Sci. Sports. 2011;21:170–183. doi: 10.1111/j.1600-0838.2010.01256.x.
    1. Nybo L., Secher N.H. Cerebral perturbations provoked by prolonged exercise. Prog. Neurobiol. 2004;72:223–261. doi: 10.1016/j.pneurobio.2004.03.005.
    1. Jeukendrup A.E., Killer S.C. The myths surrounding pre-exercise carbohydrate feeding. Ann. Nutr. Metab. 2010;57(Suppl. S2):18–25. doi: 10.1159/000322698.
    1. Rollo I., Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41:449–461. doi: 10.2165/11588730-000000000-00000.
    1. Rauch H.G., St Clair Gibson A., Lambert E.V., Noakes T.D. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br. J. Sports Med. 2005;39:34–38. doi: 10.1136/bjsm.2003.010645.
    1. Gant N., Stinear C.M., Byblow W.D. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–158. doi: 10.1016/j.brainres.2010.04.004.
    1. Chambers E.S., Bridge M.W., Jones D.A. Carbohydrate sensing in the human mouth: Effects on exercise performance and brain activity. J. Physiol. 2009;587:1779–1794. doi: 10.1113/jphysiol.2008.164285.
    1. Dorling J.L., Earnest C.P. Effect of carbohydrate mouth rinsing on multiple sprint performance. J. Int. Soc. Sports Nutr. 2013;10:41. doi: 10.1186/1550-2783-10-41.
    1. Rollo I., Homewood G., Williams C., Carter J., Goosey-Tolfrey V.L. The influence of carbohydrate mouth rinse on self-selected intermittent running performance. Int. J. Sport Nutr. Exerc. Metab. 2015 doi: 10.1123/ijsnem.2015-0001.
    1. Ali A., Foskett A., Gant N. Measuring intermittent exercise performance using shuttle running. J. Sports Sci. 2014;32:601–609. doi: 10.1080/02640414.2013.847276.
    1. Turner C.E., Byblow W.D., Stinear C.M., Gant N. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite. 2014;80C:212–219. doi: 10.1016/j.appet.2014.05.020.
    1. Phillips S.M., Sproule J., Turner A.P. Carbohydrate ingestion during team games exercise: Current knowledge and areas for future investigation. Sports Med. 2011;41:559–585. doi: 10.2165/11589150-000000000-00000.
    1. Patterson S.D., Gray S.C. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int. J. Sport Nutr. Exerc. Metab. 2007;17:445–455.
    1. Davis J.M., Welsh R.S., Alerson N.A. Effects of carbohydrate and chromium ingestion during intermittent high-intensity exercise to fatigue. Int. J. Sport Nutr. Exerc. Metab. 2000;10:476–485.
    1. Davis J.M., Welsh R.S., De Volve K.L., Alderson N.A. Effects of branched-chain amino acids and carbohydrate on fatigue during intermittent, high-intensity running. Int. J. Sports Med. 1999;20:309–314. doi: 10.1055/s-2007-971136.
    1. Davison G.W., McClean C., Brown J., Madigan S., Gamble D., Trinick T., Duly E. The effects of ingesting a carbohydrate-electrolyte beverage 15 minutes prior to high-intensity exercise performance. Res. Sports Med. 2008;16:155–166. doi: 10.1080/15438620802103155.
    1. Phillips S.M., Turner A.P., Gray S., Sanderson M.F., Sproule J. Ingesting a 6% carbohydrate-electrolyte solution improves endurance capacity, but not sprint performance, during intermittent, high-intensity shuttle running in adolescent team games players aged 12–14 years. Eur. J. Appl. Physiol. 2010;109:811–821. doi: 10.1007/s00421-010-1404-z.
    1. Phillips S.M., Turner A.P., Sanderson M.F., Sproule J. Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol. Eur. J. Appl. Physiol. 2012;112:1133–1141. doi: 10.1007/s00421-011-2067-0.
    1. Alghannam A.F. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl. Physiol. Nutr. Metab. 2011;36:748–757. doi: 10.1139/h11-097.
    1. Goedecke J.H., White N.J., Chicktay W., Mahomed H., Durandt J., Lambert M.I. The effect of carbohydrate ingestion on performance during a simulated soccer match. Nutrients. 2013;5:5193–5204. doi: 10.3390/nu5125193.
    1. Morris J.G., Nevill M.E., Thompson D., Collie J., Williams C. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 degrees C. J. Sports Sci. 2003;21:371–381. doi: 10.1080/0264041031000071191.
    1. Abbey E.L., Rankin J.W. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int. J. Sport Nutr. Exerc. Metab. 2009;19:659–672.
    1. Roberts S.P., Stokes K.A., Trewartha G., Doyle J., Hogben P., Thompson D. Effects of carbohydrate and caffeine ingestion on performance during a rugby union simulation protocol. J. Sports. Sci. 2010;28:833–842. doi: 10.1080/02640414.2010.484069.
    1. Gant N., Leiper J.B., Williams C. Gastric emptying of fluids during variable-intensity running in the heat. Int. J. Sport Nutr. Exerc. Metab. 2007;17:270–283.
    1. Baker L.B., Dougherty K.A., Chow M., Kenney W.L. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sports Exerc. 2007;39:1114–1123. doi: 10.1249/mss.0b013e3180574b02.
    1. Dougherty K.A., Baker L.B., Chow M., Kenney W.L. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med. Sci. Sports Exerc. 2006;38:1650–1658. doi: 10.1249/01.mss.0000227640.60736.8e.
    1. Winnick J.J., Davis J.M., Welsh R.S., Carmichael M.D., Murphy E.A., Blackmon J.A. Carbohydrate feedings during team sport exercise preserve physical and cns function. Med. Sci. Sports Exerc. 2005;37:306–315. doi: 10.1249/01.MSS.0000152803.35130.A4.
    1. Criswell D., Powers S., Lawler J., Tew J., Dodd S., Iryiboz Y., Tulley R., Wheeler K. Influence of a carbohydrate-electrolyte beverage on performance and blood homeostasis during recovery from football. Int. J. Sport Nutr. 1991;1:178–191.
    1. Currell K., Conway S., Jeukendrup A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009;19:34–46.
    1. Ostojic S.M., Mazic S. Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. J. Sports Sci. Med. 2002;1:47–53.
    1. Northcott S., Kenward M., Purnell K., McMorris T. Effect of a carbohydrate solution on motor skill proficiency during simulated soccer performance. Appl. Res. Coach Athl. Ann. 1999;14:105–118.
    1. Ali A., Williams C., Hulse M., Strudwick A., Reddin J., Howarth L., Eldred J., Hirst M., McGregor S. Reliability and validity of two tests of soccer skill. J. Sports Sci. 2007;25:1461–1470. doi: 10.1080/02640410601150470.
    1. Russell M., Benton D., Kingsley M. Reliability and construct validity of soccer skills tests that measure passing, shooting, and dribbling. J. Sports Sci. 2010;28:1399–1408. doi: 10.1080/02640414.2010.511247.
    1. Zeederberg C., Leach L., Lambert E.V., Noakes T.D., Dennis S.C., Hawley J.A. The effect of carbohydrate ingestion on the motor skill proficiency of soccer players. Int. J. Sport Nutr. 1996;6:348–355.
    1. Ferrauti A., Weber K., Struder H.K. Metabolic and ergogenic effects of carbohydrate and caffeine beverages in tennis. J. Sports Med.Phys. Fit. 1997;37:258–266.
    1. Gomes R.V., Capitani C.D., Ugrinowitsch C., Zourdos M.C., Fernandez-Fernandez J., Mendez-Villanueva A., Aoki M.S. Does carbohydrate supplementation enhance tennis match play performance? J. Int. Soc. Sports Nutr. 2013;10:46. doi: 10.1186/1550-2783-10-46.
    1. Hornery D.J., Farrow D., Mujika I., Young W.B. Caffeine, carbohydrate, and cooling use during prolonged simulated tennis. Int. J. Sports Physiol. Perform. 2007;2:423–438.
    1. Vergauwen L., Brouns F., Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med. Sci. Sports Exerc. 1998;30:1289–1295. doi: 10.1097/00005768-199808000-00017.
    1. Bottoms L., Sinclair J., Taylor K., Polman R., Fewtrell D. The effects of carbohydrate ingestion on the badminton serve after fatiguing exercise. J. Sports Sci. 2012;30:285–293. doi: 10.1080/02640414.2011.637948.
    1. Bottoms L.M., Hunter A.M., Galloway S.D.R. Effects of carbohyrate ingestion on skill maintenance in squash players. Eur. J. Sport Sci. 2006;6:187–195. doi: 10.1080/17461390600804455.
    1. Roberts S.P., Stokes K.A., Weston L., Trewartha G. The Bath University Rugby Shuttle Test (BURST): A pilot study. Int. J. Sports Physiol. Perform. 2010;5:64–74.
    1. Kindlon D.J. The measurement of attention. Child Psychol. Psychiatry Rev. 1998;3:72–78. doi: 10.1017/S136064179800149X.
    1. Baker L.B., Conroy D.E., Kenney W.L. Dehydration impairs vigilance-related attention in male basketball players. Med. Sci. Sports Exerc. 2007;39:976–983. doi: 10.1097/mss.0b013e3180471ff2.
    1. Currell K., Jeukendrup A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38:297–316. doi: 10.2165/00007256-200838040-00003.
    1. Russell M., Kingsley M. Influence of exercise on skill proficiency in soccer. Sports Med. 2011;41:523–539. doi: 10.2165/11589130-000000000-00000.
    1. Hopkins W.G. Measures of reliability in sports medicine and science. Sports Med. 2000;30:1–15. doi: 10.2165/00007256-200030010-00001.
    1. Atkinson G., Nevill A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–238. doi: 10.2165/00007256-199826040-00002.
    1. Clarke N.D., Drust B., Maclaren D.P., Reilly T. Fluid provision and metabolic responses to soccer-specific exercise. Eur. J. Appl. Physiol. 2008;104:1069–1077. doi: 10.1007/s00421-008-0864-x.
    1. Clarke N.D., Drust B., MacLaren D.P., Reilly T. Strategies for hydration and energy provision during soccer-specific exercise. Int. J. Sport Nutr. Exerc. Metab. 2005;15:625–640.
    1. Chryssanthopoulos C., Williams C. Pre-exercise carbohydrate meal and endurance running capacity when carbohydrates are ingested during exercise. Int. J. Sports Med. 1997;18:543–548. doi: 10.1055/s-2007-972679.
    1. Baker L.B., Jeukendrup A.E. Optimal composition of fluid-replacement beverages. Compr. Physiol. 2014;4:575–620.
    1. Murray R., Bartoli W., Stofan J., Horn M., Eddy D. A comparison of the gastric emptying characteristics of selected sports drinks. Int. J. Sport Nutr. 1999;9:263–274.
    1. Shi X., Horn M.K., Osterberg K.L., Stofan J.R., Zachwieja J.J., Horswill C.A., Passe D.H., Murray R. Gastrointestinal discomfort during intermittent high-intensity exercise: Effect of carbohydrate-electrolyte beverage. Int. J. Sport Nutr. Exerc. Metab. 2004;14:673–683.
    1. Phillips S.M., Turner A.P., Sanderson M.F., Sproule J. Beverage carbohydrate concentration influences the intermittent endurance capacity of adolescent team games players during prolonged intermittent running. Eur. J. Appl. Physiol. 2012;112:1107–1116. doi: 10.1007/s00421-011-2065-2.
    1. Pfeiffer B., Stellingwerff T., Zaltas E., Jeukendrup A.E. Oxidation of solid versus liquid cho sources during exercise. Med. Sci. Sports Exerc. 2010;42:2030–2037. doi: 10.1249/MSS.0b013e3181e0efc9.
    1. Pfeiffer B., Stellingwerff T., Zaltas E., Jeukendrup A.E. CHO oxidation from a CHO gel compared with a drink during exercise. Med. Sci. Sports Exerc. 2010;42:2038–2045. doi: 10.1249/MSS.0b013e3181e0efe6.
    1. Jeukendrup A.E. Carbohydrate and exercise performance: The role of multiple transportable carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:452–457. doi: 10.1097/MCO.0b013e328339de9f.
    1. Jeukendrup A.E. Nutrition for endurance sports: Marathon, triathlon, and road cycling. J. Sports Sci. 2011;29(Suppl. S1):S91–S99. doi: 10.1080/02640414.2011.610348.
    1. Clarke N.D., Campbell I.T., Drust B., Evans L., Reilly T., Maclaren D.P. The ingestion of combined carbohydrates does not alter metabolic responses or performance capacity during soccer-specific exercise in the heat compared to ingestion of a single carbohydrate. J. Sports Sci. 2012;30:699–708. doi: 10.1080/02640414.2012.665941.
    1. Little J.P., Chilibeck P.D., Ciona D., Forbes S., Rees H., Vandenberg A., Zello G.A. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int. J. Sport Nutr. Exerc. Metab. 2010;20:447–456.
    1. Little J.P., Chilibeck P.D., Ciona D., Vandenberg A., Zello G.A. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int. J. Sports Physiol. Perform. 2009;4:367–380.

Source: PubMed

3
Abonnieren