Carbohydrates for Soccer: A Focus on Skilled Actions and Half-Time Practices

Samuel P Hills, Mark Russell, Samuel P Hills, Mark Russell

Abstract

Carbohydrate consumption is synonymous with soccer performance due to the established effects on endogenous energy store preservation, and physical capacity maintenance. For performance-enhancement purposes, exogenous energy consumption (in the form of drinks, bars, gels and snacks) is recommended on match-day; specifically, before and during match-play. Akin to the demands of soccer, limited opportunities exist to consume carbohydrates outside of scheduled breaks in competition, such as at half-time. The link between cognitive function and blood glucose availability suggests that carbohydrates may influence decision-making and technical proficiency (e.g., soccer skills). However, relatively few reviews have focused on technical, as opposed to physical, performance while also addressing the practicalities associated with carbohydrate consumption when limited in-play feeding opportunities exist. Transient physiological responses associated with reductions in activity prevalent in scheduled intra-match breaks (e.g., half-time) likely have important consequences for practitioners aiming to optimize match-day performance. Accordingly, this review evaluated novel developments in soccer literature regarding (1) the ergogenic properties of carbohydrates for skill performance; and (2) novel considerations concerning exogenous energy provision during half-time. Recommendations are made to modify half-time practices in an aim to enhance subsequent performance. Viable future research opportunities exist regarding a deeper insight into carbohydrate provision on match-day.

Keywords: blood glucose; cognition; ergogenic; football; glycemia; skill.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Palacios-Huerta I. Structural changes during a century of the world’s most popular sport. Stat. Methods Appl. 2004;13:241–258. doi: 10.1007/s10260-004-0093-3.
    1. Russell M., Sparkes W., Northeast J., Cook C.J., Love T.D., Bracken R.M., Kilduff L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016;30:2839–2844. doi: 10.1519/JSC.0000000000000805.
    1. Mohr M., Krustrup P., Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003;21:519–528. doi: 10.1080/0264041031000071182.
    1. Stølen T., Chamari K., Castagna C., Wisløff U. Physiology of soccer: An update. Sports Med. 2005;35:501–536. doi: 10.2165/00007256-200535060-00004.
    1. Di Salvo V., Gregson W., Atkinson G., Tordoff P., Drust B. Analysis of high intensity activity in premier league soccer. Int. J. Sports Med. 2009;30:205–212. doi: 10.1055/s-0028-1105950.
    1. Russell M., Rees G., Benton D., Kingsley M. An exercise protocol that replicates soccer match-play. Int. J. Sports Med. 2011;32:511–518. doi: 10.1055/s-0031-1273742.
    1. Akenhead R., Hayes P.R., Thompson K.G., French D. Diminutions of acceleration and deceleration output during professional football match play. J. Sci. Med. Sport. 2013;16:556–561. doi: 10.1016/j.jsams.2012.12.005.
    1. Ekblom B. Applied physiology of soccer. Sports Med. 1986;3:50–60. doi: 10.2165/00007256-198603010-00005.
    1. Bangsbo J., Iaia F.M., Krustrup P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform. 2007;2:111–127. doi: 10.1123/ijspp.2.2.111.
    1. Bangsbo J., Mohr M., Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006;24:665–674. doi: 10.1080/02640410500482529.
    1. Krustrup P., Mohr M., Steensberg A., Bencke J., Kjaer M., Bangsbo J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006;38:1165–1174. doi: 10.1249/.
    1. Bloomfield J., Polman R., O’Donoghue P. Physical demands of different positions in FA Premier League soccer. J. Sports Sci. Med. 2007;6:63–70.
    1. Rampinini E., Impellizzeri F.M., Castagna C., Coutts A.J., Wisløff U. Technical performance during soccer matches of the Italian serie A league: Effect of fatigue and competitive level. J. Sci. Med. Sport. 2009;12:227–233. doi: 10.1016/j.jsams.2007.10.002.
    1. Saltin B. Metabolic fundamentals in exercise. Med. Sci. Sports Exerc. 1973;5:137–146. doi: 10.1249/00005768-197323000-00010.
    1. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2016;48:543–568.
    1. Nicholas C.W., Tsintzas K., Boobis L., Williams C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med. Sci. Sports Exerc. 1999;31:1280–1286. doi: 10.1097/00005768-199909000-00008.
    1. Cermak N., Loon L. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–1155. doi: 10.1007/s40279-013-0079-0.
    1. Russell M., Kingsley M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014;44:957–970. doi: 10.1007/s40279-014-0184-8.
    1. Drust B., Reilly T., Cable N.T. Physiological responses to laboratory-based soccer-specific intermittent and continuous exercise. J. Sports Sci. 2000;18:885–892. doi: 10.1080/026404100750017814.
    1. Nicholas C.W., Williams C., Lakomy H.K., Phillips G., Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J. Sports Sci. 1995;13:283–290. doi: 10.1080/02640419508732241.
    1. Lago-Peñas C., Lago-Ballesteros J., Dellal A., Gómez M. Game-related statistics that discriminated winning, drawing and losing teams from the spanish soccer league. J. Sports Sci. Med. 2010;9:288–293.
    1. Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997;15:257–263. doi: 10.1080/026404197367263.
    1. Hughes M., Franks I. Analysis of passing sequences, shots and goals in soccer. J. Sports Sci. 2005;23:509–514. doi: 10.1080/02640410410001716779.
    1. Stone K.J., Oliver J.L. The effect of 45 minutes of soccer-specific exercise on the performance of soccer skills. Int. J. Sports Physiol. Perform. 2009;4:163–175. doi: 10.1123/ijspp.4.2.163.
    1. Harper L.D., Briggs M.A., McNamee G., West D.J., Kilduff L.P., Stevenson E., Russell M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport. 2016;19:509–514. doi: 10.1016/j.jsams.2015.06.009.
    1. Russell M., Benton D., Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport. 2012;15:348–354. doi: 10.1016/j.jsams.2011.12.006.
    1. Collardeau M., Brisswalter J., Vercruyssen M., Audiffren M., Goubault C. Single and choice reaction time during prolonged exercise in trained subjects: Influence of carbohydrate availability. Eur. J. Appl. Physiol. 2001;86:150–156.
    1. Bandelow S., Maughan R., Shirreffs S., Ozgunen K., Kurdak S., Ersoz G., Binnet M., Dvorak J. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand. J. Med. Sci. Sports. 2010;20:148–160. doi: 10.1111/j.1600-0838.2010.01220.x.
    1. Evans M.L., Pernet A., Lomas J., Jones J., Amiel S.A. Delay in onset of awareness of acute hypoglycemia and of restoration of cognitive performance during recovery. Diabetes Care. 2000;23:893–897. doi: 10.2337/diacare.23.7.893.
    1. Shirreffs S.M., Sawka M.N., Stone M. Water and electrolyte needs for football training and match-play. J. Sports Sci. 2006;24:699–707. doi: 10.1080/02640410500482677.
    1. Schönfeld P., Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 2013;33:1493–1499. doi: 10.1038/jcbfm.2013.128.
    1. Boyle P.J., Nagy R.J., O’Connor A.M., Kempers S.F., Yeo R.A., Qualls C. Adaptation in brain glucose uptake following recurrent hypoglycemia. Proc. Natl. Acad. Sci. USA. 1994;91:9352–9356. doi: 10.1073/pnas.91.20.9352.
    1. Kingsley M., Penas-Ruiz C., Terry C., Russell M. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. J. Sci. Med. Sport. 2014;17:239–243. doi: 10.1016/j.jsams.2013.04.010.
    1. Holmes C.S., Koepke K.M., Thompson R.G., Gyves P.W., Weydert J.A. Verbal fluency and naming performance in type i diabetes at different blood glucose concentrations. Diabetes Care. 1984;7:454–459. doi: 10.2337/diacare.7.5.454.
    1. Fanelli C., Pampanelli S., Epifano L., Rambotti A.M., Ciofetta M., Modarelli F., Di Vincenzo A., Annibale B., Lepore M., Lalli C., et al. Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia. 1994;37:797–807. doi: 10.1007/BF00404337.
    1. Fanelli C.G., Epifano L., Rambotti A.M., Pampanelli S., Di Vincenzo A., Modarelli F., Lepore M., Annibale B., Ciofetta M., Bottini P., et al. Meticulous prevention of hypoglycemia normalizes the glycemic thresholds and magnitude of most of neuroendocrine responses to, symptoms of, and cognitive function during hypoglycemia in intensively treated patients with short-term iddm. Diabetes. 1993;42:1683–1689. doi: 10.2337/diab.42.11.1683.
    1. Ali A., Williams C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J. Sports Sci. 2009;27:1499–1508. doi: 10.1080/02640410903334772.
    1. De Oliveira E.P., Burini R.C. Food-dependent, exercise-induced gastrointestinal distress. J. Int. Soc. Sports Nutr. 2011;8:12. doi: 10.1186/1550-2783-8-12.
    1. Russell M., Benton D., Kingsley M. Carbohydrate ingestion before and during soccer match play and blood glucose and lactate concentrations. J. Athl. Train. 2014;49:447–453. doi: 10.4085/1062-6050-49.3.12.
    1. Burke L.M. Fluid balance during team sports. J. Sports Sci. 1997;15:287–295. doi: 10.1080/026404197367290.
    1. Clarke N.D., Drust B., MacLaren D.P.M., Reilly T. Strategies for hydration and energy provision during soccer-specific exercise. Int. J. Sport Nutr. Exerc. Metab. 2005;15:625–640. doi: 10.1123/ijsnem.15.6.625.
    1. Clarke N.D., Drust B., Maclaren D.P.M., Reilly T. Fluid provision and metabolic responses to soccer-specific exercise. Eur. J. Appl. Physiol. 2008;104:1069–1077. doi: 10.1007/s00421-008-0864-x.
    1. Harper L.D., Stevenson E.J., Rollo I., Russell M. The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J. Sci. Med. Sport. 2017;20:1123–1129. doi: 10.1016/j.jsams.2017.04.015.
    1. Dougherty K.A., Baker L.B., Chow M., Kenney W.L. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med. Sci. Sports Exerc. 2006;38:1650–1658. doi: 10.1249/01.mss.0000227640.60736.8e.
    1. Carvalho P., Oliveira B., Barros R., Padräo P., Moreira P., Teixeira V.H. Impact of fluid restriction and ad libitum water intake or an 8% carbohydrate-electrolyte beverage on skill performance of elite adolescent basketball players. Int. J. Sport Nutr. Exerc. Metab. 2011;21:214–221. doi: 10.1123/ijsnem.21.3.214.
    1. Russell M., West D.J., Harper L.D., Cook C.J., Kilduff L.P. Half-time strategies to enhance second-half performance in team-sports players: A review and recommendations. Sports Med. 2016;45:353–364. doi: 10.1007/s40279-014-0297-0.
    1. Moseley L., Lancaster G.I., Jeukendrup A.E. Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. Eur. J. Appl. Physiol. 2003;88:453–458. doi: 10.1007/s00421-002-0728-8.
    1. Astrand P., Rodahl K. Textbook of Work Physiology: Physiological Bases of Exercise. McGraw-Hill; New York, NY, USA: 1986.
    1. Costill D.L., Coyle E., Dalsky G., Evans W., Fink W., Hoopes D. Effects of elevated plasma ffa and insulin on muscle glycogen usage during exercise. J. Appl. Physiol. 1977;43:695–699. doi: 10.1152/jappl.1977.43.4.695.
    1. Rose A.J., Richter E.A. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology. 2005;20:260–270. doi: 10.1152/physiol.00012.2005.
    1. Jentjens R.L., Jeukendrup A.E. Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. Eur. J. Appl. Physiol. 2003;88:459–465. doi: 10.1007/s00421-002-0729-7.
    1. Oosthuyse T., Carstens M., Millen A.M.E. Ingesting isomaltulose versus fructose-maltodextrin during prolonged moderate-heavy exercise increases fat oxidation but impairs gastrointestinal comfort and cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2015;25:427–438. doi: 10.1123/ijsnem.2014-0178.
    1. Stevenson E.J., Watson A., Theis S., Holz A., Harper L.D., Russell M. A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise. Eur. J. Appl. Physiol. 2017;117:2321–2333. doi: 10.1007/s00421-017-3719-5.
    1. Coombes J.S., Hamilton K.L. The effectiveness of commercially available sports drinks. Sports Med. 2000;29:181–209. doi: 10.2165/00007256-200029030-00004.
    1. Sugiura K., Kobayashi K. Effect of carbohydrate ingestion on sprint performance following continuous and intermittent exercise. Med. Sci. Sports Exerc. 1998;30:1624–1630. doi: 10.1097/00005768-199811000-00011.
    1. Jentjens R.L., Cale C., Gutch C., Jeukendrup A.E. Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. Eur. J. Appl. Physiol. 2003;88:444–452. doi: 10.1007/s00421-002-0727-9.
    1. Short K.R., Sheffield-Moore M., Costill D.L. Glycemic and insulinemic responses to multiple preexercise carbohydrate feedings. Int. J. Sport Nutr. 1997;7:128–137. doi: 10.1123/ijsn.7.2.128.
    1. Towlson C., Midgley A.W., Lovell R. Warm-up strategies of professional soccer players: Practitioners’ perspectives. J. Sports Sci. 2013;31:1393–1401. doi: 10.1080/02640414.2013.792946.
    1. Brouns F., Rehrer N.J., Saris W.H., Beckers E., Menheere P., ten Hoor F. Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. Int. J. Sports Med. 1989;10:S68–S75. doi: 10.1055/s-2007-1024956.
    1. Shei R.-J., Paris H.L., Beck C.P., Chapman R.F., Mickleborough T.D. Repeated high-intensity cycling performance is unaffected by timing of carbohydrate ingestion. J. Strength Cond. Res. 2017 doi: 10.1519/JSC.0000000000002226.

Source: PubMed

3
Abonnieren