Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: a meta-analysis

Jianwen Ding, Shujun Su, Tao You, Tingting Xia, Xiaoying Lin, Zhaocong Chen, Liqun Zhang, Jianwen Ding, Shujun Su, Tao You, Tingting Xia, Xiaoying Lin, Zhaocong Chen, Liqun Zhang

Abstract

Interleukin-6 (IL-6) plays a crucial role in systemic autoimmunity and pathologic inflammation. Numerous studies have explored serum IL-6 levels in systemic lupus erythematosus (SLE) and their correlation with disease activity. Here, we performed a meta-analysis to quantitatively assess the correlation between the serum IL-6 levels and SLE activity. The PubMed and EMBASE databases were thoroughly searched for relevant studies up to September 2019. Standardized mean differences (SMDs) with 95% confidence intervals (95% CIs) were used to describe the differences between serum IL-6 levels in SLE patients and healthy controls and between those in active SLE patients and inactive SLE patients. The correlation between the serum IL-6 levels and disease activity was evaluated using Fisher's z values. A total of 24 studies involving 1817 SLE patients and 874 healthy controls were included in this meta-analysis. Serum IL-6 levels were significantly higher in SLE patients than in the healthy controls (pooled SMD: 2.12, 95% CI: 1.21-3.03, Active SLE patients had higher serum IL-6 levels than inactive SLE patients (pooled SMD: 2.12, 95% CI: 1.21-3.03). Furthermore, the pooled Fisher's z values (pooled Fisher's z=0.36, 95% CI: 0.26-0.46, p<0.01) showed that there was a positive correlation between the serum IL-6 levels and SLE activity. This study suggested that serum IL-6 levels were higher in patients with SLE than in healthy controls, and they were positively correlated with disease activity when Systemic Lupus Erythematosus Disease Activity Index>4 was defined as active SLE. More homogeneous studies with large sample sizes are warranted to confirm our findings due to several limitations in our meta-analysis.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1.. Flow chart of the selection…
Figure 1.. Flow chart of the selection process for eligible studies.
Figure 2.. Meta-analysis comparing the serum IL-6…
Figure 2.. Meta-analysis comparing the serum IL-6 levels in SLE patients and healthy controls.
Figure 3.. Meta-analysis comparing the serum IL-6…
Figure 3.. Meta-analysis comparing the serum IL-6 levels in active SLE patients and inactive SLE patients.
Figure 4.. Meta-analysis of the correlation between…
Figure 4.. Meta-analysis of the correlation between the serum IL-6 level and SLE activity.
Figure 5.. Sensitivity analysis for the pooled…
Figure 5.. Sensitivity analysis for the pooled results of differences between the serum IL-6 levels in SLE patients and healthy controls (A); Sensitivity analysis for the pooled results of the differences between the serum IL-6 level in active SLE patients and inactive SLE patients (B); Sensitivity analysis for the pooled results of the correlation between the serum IL-6 level and SLE activity (C).
Figure 6.. Funnel plot of the pooled…
Figure 6.. Funnel plot of the pooled results of differences between serum IL-6 levels in SLE patients and healthy controls (A); The adjusted funnel plot of the pooled results of differences between serum IL-6 levels in SLE patients and healthy controls (B); Funnel plot of the pooled results of the correlation between the serum IL-6 level and SLE activity (C); The adjusted funnel plot of the pooled results of the correlation between the serum IL-6 level and SLE activity (D).

References

    1. Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum. 1995;38(4):ee1801. doi: 10.1002/art.1780380415.
    1. Ruiz-Irastorza G, Khamashta MA, Castellino G, Hughes GR. Systemic lupus erythematosus. Lancet. 2001;357(9261):1027–32. doi: 10.1016/S0140-6736(00)04239-2.
    1. Dean GS, Tyrrell-Price J, Crawley E, Isenberg DA. Cytokines and systemic lupus erythematosus. Ann Rheum Dis. 2000;59(4):243–51. doi: 10.1136/ard.59.4.243.
    1. Aringer M, Smolen JS. The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Res Ther. 2008;10(1):202. doi: 10.1186/ar2341.
    1. Tackey E, Lipsky PE, Illei GG. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus. 2004;13(5):339–43. doi: 10.1191/0961203304lu1023oa.
    1. Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med. 2017;15(1):239. doi: 10.1186/s12967-017-1345-y.
    1. Lotz M. Interleukin-6: a comprehensive review. Cancer Treat Res. 1995;80:209–33. doi: 10.1007/978-1-4613-1241-3.
    1. Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res. 2002;4 Suppl 3(Suppl 3):S233–42. doi: 10.1186/ar565.
    1. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5. doi: 10.1002/eji.201040391.
    1. Yuk CM, Park HJ, Kwon BI, Lah SJ, Chang J, Kim JY, et al. Basophil-derived IL-6 regulates TH17 cell differentiation and CD4 T cell immunity. Sci Rep. 2017;7:41744. doi: 10.1038/srep41744.
    1. Fraunberger P, Wang Y, Holler E, Parhofer KG, Nagel D, Walli AK, et al. Prognostic value of interleukin 6, procalcitonin, and C-reactive protein levels in intensive care unit patients during first increase of fever. Shock. 2006;26(1):10–2. doi: 10.1097/.
    1. Mroczko B, Groblewska M, Gryko M, Kedra B, Szmitkowski M. Diagnostic usefulness of serum interleukin 6 (IL-6) and C-reactive protein (CRP) in the differentiation between pancreatic cancer and chronic pancreatitis. J Clin Lab Anal. 2010;24(4):256–61. doi: 10.1002/jcla.20395.
    1. Panichi V, Maggiore U, Taccola D, Migliori M, Rizza GM, Consani C, et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol Dial Transplant. 2004;19(5):1154–60. doi: 10.1093/ndt/gfh052.
    1. Rupinski MT, Dunlap WP. Approximating Pearson product-moment correlations from Kendall's tau and Spearman's rho. Educational and Psychological Measurement. 1996;56(3):419–29. doi: 10.1177/0013164496056003004.
    1. Fisher RA. On the “probable error” of a coefficient of correlation deduced from a small sample. Metron. 1921:205–35.
    1. Fisher RA. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika. 1915;10(4):507–21. doi: 10.2307/2331838.
    1. Shadish WR, Haddock CK. Combining estimates of effect size. In: Cooper H., Hedges L. V., editors. The handbook of research synthesis. 1994. pp. 261–81. (Eds) p.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34. doi: 10.1136/bmj.315.7109.629.
    1. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101. doi: 10.2307/2533446.
    1. Xiao Y, Liu H, Chen L, Wang Y, Yao X, Jiang X. Association of microRNAs genes polymorphisms with arthritis: a systematic review and meta-analysis. Biosci Rep. 2019;39(7):BSR20190298. doi: 10.1042/BSR20190298.
    1. Ye J, Sun H, Feng Z, Zhang Q, Xia Y, Ji Y, et al. Prognostic significance of LncRNA GHET1 expression in various cancers: a systematic review and meta-analysis. Biosci Rep. 2019;39(10):BSR20190608. doi: 10.1042/BSR20190608.
    1. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63. doi: 10.1111/j.0006-341X.2000.00455.x.
    1. Avrămescu C, Biciuşcă V, Dăianu T, Turculeanu A, Bălăşoiu M, Popescu SN, et al. Cytokine panel and histopathological aspects in the systemic lupus erythematosus. Rom J Morphol Embryol. 2010;51(4):633–40.
    1. Boehme MW, Raeth U, Galle PR, Stremmel W, Scherbaum WA. Serum thrombomodulin-a reliable marker of disease activity in systemic lupus erythematosus (SLE): advantage over established serological parameters to indicate disease activity. Clin Exp Immunol. 2000;119(1):189–95. doi: 10.1046/j.1365-2249.2000.01107.x.
    1. Cavalcanti A, Santos R, Mesquita Z, Duarte AL, Lucena-Silva N. Cytokine profile in childhood-onset systemic lupus erythematosus: a cross-sectional and longitudinal study. Braz J Med Biol Res. 2017;50(4):e5738. doi: 10.1590/1414-431x20175738.
    1. Chun HY, Chung JW, Kim HA, Yun JM, Jeon JY, Ye YM, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol. 2007;27(5):461–6. doi: 10.1007/s10875-007-9104-0.
    1. Figueiredo-Braga M, Cornaby C, Cortez A, Bernardes M, Terroso G, Figueiredo M, et al. Depression and anxiety in systemic lupus erythematosus: The crosstalk between immunological, clinical, and psychosocial factors. Medicine. 2018;97(28):e11376. doi: 10.1097/MD.0000000000011376.
    1. Guo Y, Chai Q, Zhao Y, Li P, Qiao J, Huang J. Increased activation of toll-like receptors-7 and -8 of peripheral blood mononuclear cells and upregulated serum cytokines in patients with pediatric systemic lupus erythematosus. Int J Clin Exp Med. 2015;8(11):20472–80.
    1. Hu S, Xu Q, Xiao W, Huang M. The expression of molecular chaperone HSP90 and IL-6 in patients with systemic lupus erythematosus. J Huazhong Univ Sci Technolog Med Sci. 2006;26(6):664–6. doi: 10.1007/s11596-006-0609-1.
    1. Idborg H, Eketjäll S, Pettersson S, Gustafsson JT, Zickert A, Kvarnström M, et al. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci Med. 2018;5(1):e000260. doi: 10.1136/lupus-2018-000260.
    1. Jolly M, Francis S, Aggarwal R, Mikolaitis RA, Niewold TB, Chubinskaya S, et al. Serum free light chains, interferon-alpha, and interleukins in systemic lupus erythematosus. Lupus. 2014;23(9):881–8. doi: 10.1177/0961203314530793.
    1. Koca SS, Isik A, Ustundag B, Metin K, Aksoy K. Serum pro-hepcidin levels in rheumatoid arthritis and systemic lupus erythematosus. Inflammation. 2008;31(3):146–53. doi: 10.1007/s10753-008-9060-8.
    1. Koca SS, Özgen M, Işık B, Dağlı MN, Üstündağ B, Işık A. Serum salusin-α levels in systemic lupus erythematosus and systemic sclerosis. Eur J Rheumatol. 2014;1(1):14–7. doi: 10.5152/eurjrheum.2014.004.
    1. Mak A, Tang CS, Ho RC. Serum tumour necrosis factor-alpha is associated with poor health-related quality of life and depressive symptoms in patients with systemic lupus erythematosus. Lupus. 2013;22(3):254–61. doi: 10.1177/0961203312471872.
    1. Mellor-Pita S, Citores MJ, Castejon R, Yebra-Bango M, Tutor-Ureta P, Rosado S, et al. Monocytes and T lymphocytes contribute to a predominance of interleukin 6 and interleukin 10 in systemic lupus erythematosus. Cytometry B Clin Cytom. 2009;76(4):261–70. doi: 10.1002/cyto.b.20468.
    1. Monzavi SM, Alirezaei A, Shariati-Sarabi Z, Tavakol Afshari J, Mahmoudi M, Dormanesh B, et al. Efficacy analysis of hydroxychloroquine therapy in systemic lupus erythematosus: a study on disease activity and immunological biomarkers. Inflammopharmacology. 2018;26(5):1175–82. doi: 10.1007/s10787-018-0512-y.
    1. Peterson E, Robertson AD, Emlen W. Serum and urinary interleukin-6 in systemic lupus erythematosus. Lupus. 1996;5(6):571–5. doi: 10.1177/096120339600500603.
    1. Raymond WD, Eilertsen GO, Nossent J. Principal component analysis reveals disconnect between regulatory cytokines and disease activity in Systemic Lupus Erythematosus. Cytokine. 2019;114:67–73. doi: 10.1016/j.cyto.2018.10.013.
    1. Robak E, Sysa-Jedrzejowska A, Stepień H, Robak T. Circulating interleukin-6 type cytokines in patients with systemic lupus erythematosus. Eur Cytokine Netw. 1997;8(3):281–6.
    1. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, et al. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12(2):R53. doi: 10.1186/ar2964.
    1. Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine. 2015;72(2):146–53. doi: 10.1016/j.cyto.2014.12.027.
    1. Tanaka A, Ito T, Kibata K, Inagaki-Katashiba N, Amuro H, Nishizawa T, et al. Serum high-mobility group box 1 is correlated with interferon-α and may predict disease activity in patients with systemic lupus erythematosus. Lupus. 2019;28(9):1120–7. doi: 10.1177/0961203319862865.
    1. Tang Y, Tao H, Gong Y, Chen F, Li C, Yang X. Changes of Serum IL-6, IL-17, and Complements in Systemic Lupus Erythematosus Patients. J Interferon Cytokine Res. 2019;39(7):410–5. doi: 10.1089/jir.2018.0169.
    1. Thanadetsuntorn C, Ngamjanyaporn P, Setthaudom C, Hodge K, Saengpiya N, Pisitkun P. The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus. Sci Rep. 2018;8(1):2620. doi: 10.1038/s41598-018-20947-4.
    1. Wan Asyraf WA, Mohd Shahrir MS, Asrul W, Norasyikin AW, Hanita O, Kong WY, et al. The association between serum prolactin levels and interleukin-6 and systemic lupus erythematosus activity. Reumatismo. 2018;70(4):241–50. doi: 10.4081/reumatismo.2018.1075.
    1. Yang Y, Che Y, Yang L. Relationship of serum inflammatory cytokines with anemia and vascular endothelial function in children with systemic lupus erythematosus. Clin Hemorheol Microcirc. 2019;73(2):299–306. doi: 10.3233/CH-180492.
    1. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol. 1991;147(1):117–23.
    1. Kitani A, Hara M, Hirose T, Harigai M, Suzuki K, Kawakami M, et al. Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression. Clin Exp Immunol. 1992;88(1):75–83. doi: 10.1111/j.1365-2249.1992.tb03042.x.
    1. Hillion S, Garaud S, Devauchelle V, Bordron A, Berthou C, Youinou P, et al. Interleukin-6 is responsible for aberrant B-cell receptor-mediated regulation of RAG expression in systemic lupus erythematosus. Immunology. 2007;122(3):371–80. doi: 10.1111/j.1365-2567.2007.02649.x.
    1. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9. doi: 10.1038/ni1496.
    1. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48(6):1521–9. doi: 10.1002/art.11143.
    1. Mihara M, Kasutani K, Okazaki M, Nakamura A, Kawai S, Sugimoto M, et al. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int Immunopharmacol. 2005;5(12):1731–40. doi: 10.1016/j.intimp.2005.05.010.
    1. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY. Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology. 2006;119(3):296–305. doi: 10.1111/j.1365-2567.2006.02433.x.
    1. Lu M, Yu S, Xu W, Gao B, Xiong S. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response. J Immunol Res. 2015;2015:946748. doi: 10.1155/2015/946748.
    1. Decker P, Kötter I, Klein R, Berner B, Rammensee HG. Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology. 2006;45(9):1087–95. doi: 10.1093/rheumatology/kel061.
    1. El-Shereef RR, Lotfi A, Abdel-Naeam EA, Tawfik H. Serum and Urinary Interleukin-6 in Assessment of Renal Activity in Egyptian Patients with Systemic Lupus Erythematosus. Clin Med Insights Arthritis Musculoskelet Disord. 2016;9:29–36. doi: 10.4137/CMAMD.S32269.
    1. Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, Llorente L, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007;56(4):1242–50. doi: 10.1002/art.22451.
    1. Cepika AM, Bendelja K, Vergles JM, Malenica B, Kapitanovic S, Gagro A. Monocyte response to LPS after exposure to corticosteroids and chloroquine with implications for systemic lupus erythematosus. Scand J Immunol. 2010;72(5):434–43. doi: 10.1111/j.1365-3083.2010.02450.x.
    1. Shemer A, Kivity S, Shovman O, Bashi T, Perry O, Watad A, et al. Tuftsin-phosphorylcholine (TPC) equally effective to methylprednisolone in ameliorating lupus nephritis in a mice model. Clin Exp Immunol. 2018;193(2):160–6. doi: 10.1111/cei.13137.

Source: PubMed

3
Abonnieren