Daily Intake of Fermented Milk Containing Lactobacillus casei Shirota (Lcs) Modulates Systemic and Upper Airways Immune/Inflammatory Responses in Marathon Runners

Mauro Vaisberg, Vitoria Paixão, Ewin B Almeida, Juliana M B Santos, Roberta Foster, Marcelo Rossi, Tania C Pithon-Curi, Renata Gorjão, Cesar M Momesso, Marília S Andrade, José R Araujo, Maurício C Garcia, Moises Cohen, Elisabeth C Perez, Alana Santos-Dias, Rodolfo P Vieira, André L L Bachi, Mauro Vaisberg, Vitoria Paixão, Ewin B Almeida, Juliana M B Santos, Roberta Foster, Marcelo Rossi, Tania C Pithon-Curi, Renata Gorjão, Cesar M Momesso, Marília S Andrade, José R Araujo, Maurício C Garcia, Moises Cohen, Elisabeth C Perez, Alana Santos-Dias, Rodolfo P Vieira, André L L Bachi

Abstract

Background: Although Lactobacillus casei Shirota (LcS) can benefit the immune status, the effects of LcS in the immune/inflammatory responses of marathon runners has never been evaluated. Therefore, here we evaluated the effect of daily ingestion of fermented milk containing or not LcS in the systemic and upper airway immune/inflammatory responses before and after a marathon.

Methods: Forty-two male marathon runners ingested a fermented milk containing 40 billion of LcS/day (LcS group, n = 20) or placebo (unfermented milk, n = 22) during 30 days pre-marathon. Immune/inflammatory parameters in nasal mucosa and serum, as well as concentrations of secretory IgA (SIgA) and antimicrobial peptides in saliva, were evaluated before and after fermented milk ingestion, immediately, 72 h, and 14 d post-marathon.

Results: Higher proinflammatory cytokine levels in serum and nasal mucosa, and also lower salivary levels of SIgA and antimicrobial peptides, were found immediately post-marathon in the placebo group compared to other time points and to LcS group. In opposite, higher anti-inflammatory levels and reduced neutrophil infiltration on nasal mucosa were found in the LcS group compared to other time points and to the placebo group.

Conclusion: For the first time, it is shown that LcS is able to modulate the systemic and airways immune responses post-marathon.

Keywords: antimicrobial peptides; cytokines; neutrophil infiltration; probiotics; secretory immunoglobulin A.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the study.
Figure 2
Figure 2
Experimental design.
Figure 3
Figure 3
LcS maintain salivary immune protection after the marathon. Salivary concentration of secretory immunoglobulin A (SIgA, g/mL, (A) and the antimicrobial peptides defensing-1 (ng/mL (B), lysozyme (ng/mL (C), cathelicidin LL-37 (ng/mL (D), and lactoferrin (g/mL (E) in the volunteers of the placebo and LcS groups at five different occasions: before (Pre) and 30 days after the ingestion of the fermented milk containing or not containing LcS (Post-ingestion); immediately (IM); 72 hours (72 h) and 14 days (14 d) after the marathon ends. Values are presented in the median with the respective quartiles. The risk value was set at 5% (p < 0.05). * p < 0.05 and ** p < 0.01.
Figure 4
Figure 4
LcS increase anti-inflammatory response on the upper airways after the marathon. Concentration (pg/mg of total protein) of IL-1β (A), IL-1ra (B), IL-4 (C), IL-5 (D), IL-6 (E), IL-10 (F), IL-12p70 (G), IL-13 (H), and TNF- (I) in nasal mucosal lavage of the volunteers in the placebo and LcS groups at five different occasions: before (Pre) and 30 days after the ingestion of the fermented milk containing or not containing LcS (Post-ingestion); immediately (IM); 72 hours (72 h) and 14 days (14 d) after the marathon ends. Values are presented in median with the respective quartiles. * p < 0.05; ** p < 0.01 and *** p < 0.001.
Figure 5
Figure 5
LcS increase systemic IL-12p70 levels after the marathon Serum concentration (pg/mL) of IL-1β (A), IL-1ra (B), IL-4 (C), IL-5 (D), IL-6 (E), IL-10 (F), IL-12p70 (G), IL-13 (H), and TNF- (I) in the placebo and LcS groups at five different occasions: before (Pre) and 30 days after the ingestion of the fermented milk containing or not containing LcS (Post-ingestion); immediately (IM); 72 hours (72 h) and 14 days (14 d) after the marathon. Values are presented in median with the respective quartiles. * p < 0.05; ** p < 0.01 and *** p < 0.001.

References

    1. Nieman D.C. Is infection risk linked to exercise workload? Med. Sci. Sports Exerc. 2000;32:S406–S411. doi: 10.1097/00005768-200007001-00005.
    1. Bermon S. Airway inflammation and upper respiratory tract infection in athletes: Is there a link? Exerc. Immunol. Rev. 2007;13:6–14.
    1. Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N.C., Fleshner M., Green C., Pedersen B.K., Hoffman-Goetz L., et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011;17:6–63.
    1. Vaisberg M., Suguri V.M., Gregorio L.C., Lopes J.D., Bachi A.L. Cytokine kinetics in nasal mucosa and sera: new insights in understanding upper-airway disease of marathon runners. Exerc. Immunol. Rev. 2013;19:49–59.
    1. Baken K.A., Ezendam J., Gremmer E.R., de Klerk A., Pennings J.L., Matthee B., Peijnenburg A.A., van Loveren H. Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int. J. Food Microbiol. 2006;112:8–18. doi: 10.1016/j.ijfoodmicro.2006.06.009.
    1. Shida K., Nanno M., Nagata S. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes. 2011;2:109–114. doi: 10.4161/gmic.2.2.15661.
    1. Kekkonen R.A., Vasankari T.J., Vuorimaa T., Haahtela T., Julkunen I., Korpela R. The effect of probiotics on respiratory infections and gastrointestinal symptoms during training in marathon runners. Int. J. Sport Nutr. Exerc. Metab. 2007;17:352–363. doi: 10.1123/ijsnem.17.4.352.
    1. Gleeson M., Bishop N.C., Oliveira M., Tauler P. Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int. J. Sport Nutr. Exerc. Metab. 2011;21:55–64. doi: 10.1123/ijsnem.21.1.55.
    1. Harriss D.J., Atkinson G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 2015;36:1121–1124. doi: 10.1055/s-0035-1565186.
    1. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3.
    1. Pedersen B.K., Akerstrom T.C., Nielsen A.R., Fischer C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007;103:1093–1098. doi: 10.1152/japplphysiol.00080.2007.
    1. Beal A.L., Cerra F.B. Multiple organ failure syndrome in the 1990s. Systemic inflammatory response and organ dysfunction. JAMA. 1994;271:226–233. doi: 10.1001/jama.1994.03510270072043.
    1. Martin C., Boisson C., Haccoun M., Thomachot L., Mege J.L. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit. Care Med. 1997;25:1813–1819. doi: 10.1097/00003246-199711000-00018.
    1. Steensberg A., Keller C., Starkie R.L., Osada T., Febbraio M.A., Pedersen B.K. IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2002;283:E1272–E1278. doi: 10.1152/ajpendo.00255.2002.
    1. Pedersen B.K., Febbraio M.A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007.
    1. Steensberg A., Fischer C.P., Keller C., Moller K., Pedersen B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiology Endocrinol. Metab. 2003;285:E433–E437. doi: 10.1152/ajpendo.00074.2003.
    1. Sugama K., Suzuki K., Yoshitani K., Shiraishi K., Kometani T. Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exerc. Immunol. Rev. 2013;19:29–48.
    1. Jee H., Jin Y. Effects of prolonged endurance exercise on vascular endothelial and inflammation markers. J. Sports Sci. Med. 2012;11:719–726.
    1. Harbige L.S., Pinto E., Allgrove J., Thomas L.V. Immune Response of Healthy Adults to the Ingested Probiotic Lactobacillus casei Shirota. Scand. J. Immunol. 2016;84:353–364. doi: 10.1111/sji.12495.
    1. Nieman D.C., Henson D.A., Smith L.L., Utter A.C., Vinci D.M., Davis J.M., Kaminsky D.E., Shute M. Cytokine changes after a marathon race. J. Appl. Physiol. 2001;91:109–114. doi: 10.1152/jappl.2001.91.1.109.
    1. Abedelmalek S., Souissi N., Takayuki A., Hadouk S., Tabka Z. Effect of Acute Maximal Exercise on Circulating Levels of Interleukin-12 during Ramadan Fasting. Asian J. Sports Med. 2011;2:154–160. doi: 10.5812/asjsm.34751.
    1. Miettinen M., Matikainen S., Vuopio-Varkila J., Pirhonen J., Varkila K., Kurimoto M., Julkunen I. Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect. Immun. 1998;66:6058–6062.
    1. Takeda K., Suzuki T., Shimada S.I., Shida K., Nanno M., Okumura K. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 2006;146:109–115. doi: 10.1111/j.1365-2249.2006.03165.x.
    1. Jayne J.G., Bensman T.J., Schaal J.B., Park A.Y.J., Kimura E., Tran D., Selsted M.E., Beringer P.M. Rhesus theta-Defensin-1 Attenuates Endotoxin-induced Acute Lung Injury by Inhibiting Proinflammatory Cytokines and Neutrophil Recruitment. Am. J. Respir. Cell Mol. Biol. 2018;58:310–319. doi: 10.1165/rcmb.2016-0428OC.
    1. Wei-Xu H., Wen-Yun Z., Xi-Ling Z., Zhu W., Li-Hua W., Xiao-Mu W., Hui-Ping W., Wen-Ding W., Dan H., Qin X., et al. Anti-Interleukin-1 Beta/Tumor Necrosis Factor-Alpha IgY Antibodies Reduce Pathological Allergic Responses in Guinea Pigs with Allergic Rhinitis. Mediat. Inflamm. 2016;2016:3128182. doi: 10.1155/2016/3128182.
    1. Bedard M., McClure C.D., Schiller N.L., Francoeur C., Cantin A., Denis M. Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 1993;9:455–462. doi: 10.1165/ajrcmb/9.4.455.
    1. Luna L.A., Jr., Bachi A.L., Novaes e Brito R.R., Eid R.G., Suguri V.M., Oliveira P.W., Gregorio L.C., Vaisberg M. Immune responses induced by Pelargonium sidoides extract in serum and nasal mucosa of athletes after exhaustive exercise: modulation of secretory IgA, IL-6 and IL-15. Phytomed. Int. J. Phytother. Phytopharm. 2011;18:303–308. doi: 10.1016/j.phymed.2010.08.003.
    1. Ramanathan M., Jr., London N.R., Jr., Tharakan A., Surya N., Sussan T.E., Rao X., Lin S.Y., Toskala E., Rajagopalan S., Biswal S. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice. Am. J. Respir. Cell Mol. Biol. 2017;57:59–65. doi: 10.1165/rcmb.2016-0351OC.
    1. Fireman P. Understanding asthma pathophysiology. Allergy Asthma Proc. 2003;24:79–83.
    1. Nakagome K., Imamura M., Kawahata K., Harada H., Okunishi K., Matsumoto T., Sasaki O., Tanaka R., Kano M.R., Chang H., et al. High expression of IL-22 suppresses antigen-induced immune responses and eosinophilic airway inflammation via an IL-10-associated mechanism. J. Immunol. 2011;187:5077–5089. doi: 10.4049/jimmunol.1001560.
    1. Shida K., Suzuki T., Kiyoshima-Shibata J., Shimada S., Nanno M. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin. Vaccine Immunol. 2006;13:997–1003. doi: 10.1128/CVI.00076-06.
    1. Zielinska D., Dlugosz E., Zawistowska-Deniziak A. Functional Properties of Food Origin Lactobacillus in the Gastrointestinal Ecosystem-In Vitro Study. Probiotics Antimicrob. Proteins. 2018 doi: 10.1007/s12602-018-9458-z.
    1. De Marco S., Sichetti M., Muradyan D., Piccioni M., Traina G., Pagiotti R., Pietrella D. Probiotic Cell-Free Supernatants Exhibited Anti-Inflammatory and Antioxidant Activity on Human Gut Epithelial Cells and Macrophages Stimulated with LPS. Evid. Based Complement. Altern. Med. ECAM. 2018;2018:1756308. doi: 10.1155/2018/1756308.
    1. Van Hemert S., Meijerink M., Molenaar D., Bron P.A., de Vos P., Kleerebezem M., Wells J.M., Marco M.L. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol. 2010;10:293. doi: 10.1186/1471-2180-10-293.
    1. Izadpanah A., Gallo R.L. Antimicrobial peptides. J. Am. Acad. Dermatol. 2005;52:381–390. doi: 10.1016/j.jaad.2004.08.026.
    1. Cox G., Pyne D., Kyd J., McDonald W., Fricker P., Cripps A. Salivary lactoferrin as a marker of immunocompetence in elite swimmers. Int. J. Sports Med. 1999;21:S83–S84.
    1. Gill S.K., Teixeira A.M., Rosado F., Hankey J., Wright A., Marczak S., Murray A., Costa R.J. The impact of a 24-h ultra-marathon on salivary antimicrobial protein responses. Int. J. Sports Med. 2014;35:966–971. doi: 10.1055/s-0033-1358479.
    1. Inoue H., Sakai M., Kaida Y., Kaibara K. Blood lactoferrin release induced by running exercise in normal volunteers: antibacterial activity. Clin. Chim. Acta Int. J. Clin. Chem. 2004;341:165–172. doi: 10.1016/j.cccn.2003.12.001.

Source: PubMed

3
Abonnieren