Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis

Chunguang Chen, Christian M Cohrs, Julia Stertmann, Robert Bozsak, Stephan Speier, Chunguang Chen, Christian M Cohrs, Julia Stertmann, Robert Bozsak, Stephan Speier

Abstract

Background: Plasma insulin levels are predominantly the product of the morphological mass of insulin producing beta cells in the pancreatic islets of Langerhans and the functional status of each of these beta cells. Thus, deficiency in either beta cell mass or function, or both, can lead to insufficient levels of insulin, resulting in hyperglycemia and diabetes. Nonetheless, the precise contribution of beta cell mass and function to the pathogenesis of diabetes as well as the underlying mechanisms are still unclear. In the past, this was largely due to the restricted number of technologies suitable for studying the scarcely accessible human beta cells. However, in recent years, a number of new platforms have been established to expand the available techniques and to facilitate deeper insight into the role of human beta cell mass and function as cause for diabetes and as potential treatment targets.

Scope of review: This review discusses the current knowledge about contribution of human beta cell mass and function to different stages of type 1 and type 2 diabetes pathogenesis. Furthermore, it highlights standard and newly developed technological platforms for the study of human beta cell biology, which can be used to increase our understanding of beta cell mass and function in human glucose homeostasis.

Major conclusions: In contrast to early disease models, recent studies suggest that in type 1 and type 2 diabetes impairment of beta cell function is an early feature of disease pathogenesis while a substantial decrease in beta cell mass occurs more closely to clinical manifestation. This suggests that, in addition to beta cell mass replacement for late stage therapies, the development of novel strategies for protection and recovery of beta cell function could be most promising for successful diabetes treatment and prevention. The use of today's developing and wide range of technologies and platforms for the study of human beta cells will allow for a more detailed investigation of the underlying mechanisms and will facilitate development of treatment approaches to specifically target human beta cell mass and function.

Keywords: Beta cell function; Beta cell mass; Diabetes; Human; In situ; In vitro; In vivo; Islet of Langerhans; Pathogenesis.

Figures

Figure 1
Figure 1
Models of the contribution of beta cell mass and function to pathogenesis of type 1 diabetes (A) and type 2 diabetes (B). (A): Beta cell mass and function in the development of type 1 diabetes. Initiation of islet autoimmunity by genetic and environmental factors leads to a relapsing-remitting decline of beta cell function, continuously increasing beta cell workload, and stress in the asymptomatic prediabetes phase. Shortly before clinical manifestation of diabetes the prolonged intensified beta cell workload and autoimmunity results in total cellular exhaustion and enhanced cell death leading to a massive decrease in beta cell mass and the onset of hyperglycemia. In some patients, initial insulin treatment induces temporary remission called the “honeymoon phase,” which is attributed to a moderate reduction in beta cell workload and antigenicity, resulting in functional recovery of residual beta cells. However, ongoing autoimmunity and elevated workload lead to recurrence of cellular exhaustion, cell death, and the development of overt diabetes. Black line: beta cell mass; Blue line: beta cell function. The color-coded background indicates the intensity of beta cell workload and stress caused by immune infiltration, metabolic demand and hyperglycemia. (B): Beta cell mass and function in the development of type 2 diabetes. In many individuals, genetic predisposition and unhealthy lifestyle lead to an increased insulin resistance, which is typically met by massive functional and moderate morphological compensation to maintain normoglycemia, thus increasing the workload of each beta cell. In some of these individuals, functional compensation halts, despite prolonged insulin resistance and results in a further escalation of beta cell workload and glucose intolerance. In this prediabetic phase, chronic glucose intolerance and elevated blood glucose levels continuously exacerbate beta cell workload and stress, culminating in cellular exhaustion, cell death, and clinical manifestation of hyperglycemia. Thereafter, uncontrolled hyperglycemia, often in concert with other cytotoxic factors, leads to accelerated beta cell mass loss and functional deterioration in overt diabetic patients. Black line: beta cell mass; Blue line: beta cell function. The color-coded background indicates the intensity of beta cell workload and stress caused by insulin resistance, metabolic demand, hyperglycemia and additional cytotoxic factors.
Figure 2
Figure 2
Human pancreas tissue slices for the in situ study of human beta cell morphology and function. (A) Maximum intensity projection of a human islet in a pancreas tissue slice from a non-diabetic human patient that underwent partial pancreatectomy. Slices were stained for insulin (green), glucagon (blue), somatostatin (yellow), and fluorescently labeled lectin (red) following recently published protocols . (B) Kinetic insulin release from 4 human pancreas tissue slices obtained from the same pancreatic tissue as used in (A). Insulin release is expressed as simulation index (SI) over mean basal secretion (0–10 min). Slices were perfused in a closed chamber with Krebs–Ringer bicarbonate HEPES buffer and indicated glucose concentrations at a flow rate of 200 μl/min using a perifusion system (Biorep). Insulin concentrations of the perfusate were assessed by ELISA. Human tissue was kindly provided by Michele Solimena and Jürgen Weitz (University Hospital Carl Gustav Carus, TU Dresden, Germany).

References

    1. Eisenbarth G.S. Type I diabetes mellitus. A chronic autoimmune disease. The New England Journal of Medicine. 1986;314(21):1360–1368.
    1. Chatenoud L., Bluestone J.A. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Reviews Immunology. 2007;7(8):622–632.
    1. von Herrath M., Sanda S., Herold K. Type 1 diabetes as a relapsing-remitting disease? Nature Reviews Immunology. 2007;7(12):988–994.
    1. van Belle T.L., Coppieters K.T., von Herrath M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews. 2011;91(1):79–118.
    1. Ziegler A.G., Rewers M., Simell O., Simell T., Lempainen J., Steck A. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–2479.
    1. Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatric Diabetes. 2016;17(Suppl 22):31–36.
    1. Skowera A., Ellis R.J., Varela-Calvino R., Arif S., Huang G.C., Van-Krinks C. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. The Journal of Clinical Investigation. 2008;118(10):3390–3402.
    1. Brozzi F., Nardelli T.R., Lopes M., Millard I., Barthson J., Igoillo-Esteve M. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 2015;58(10):2307–2316.
    1. Herold K.C., Usmani-Brown S., Ghazi T., Lebastchi J., Beam C.A., Bellin M.D. Beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. The Journal of Clinical Investigation. 2015;125(3):1163–1173.
    1. Gianani R., Putnam A., Still T., Yu L., Miao D., Gill R.G. Initial results of screening of nondiabetic organ donors for expression of islet autoantibodies. Journal of Clinical Endocrinology & Metabolism. 2006;91(5):1855–1861.
    1. In't Veld P., Lievens D., De Grijse J., Ling Z., Van der Auwera B., Pipeleers-Marichal M. Screening for insulitis in adult autoantibody-positive organ donors. Diabetes. 2007;56(9):2400–2404.
    1. Rodriguez-Calvo T., Zapardiel-Gonzalo J., Amirian N., Castillo E., Lajevardi Y., Krogvold L. Increase in pancreatic proinsulin and preservation of beta cell mass in autoantibody positive donors prior to type 1 diabetes onset. Diabetes. 2017
    1. Diedisheim M., Mallone R., Boitard C., Larger E. Beta-cell mass in nondiabetic autoantibody-positive subjects: an analysis based on the network for pancreatic organ donors database. Journal of Clinical Endocrinology & Metabolism. 2016;101(4):1390–1397.
    1. Sherry N.A., Kushner J.A., Glandt M., Kitamura T., Brillantes A.M., Herold K.C. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes. 2006;55(12):3238–3245.
    1. Sreenan S., Pick A.J., Levisetti M., Baldwin A.C., Pugh W., Polonsky K.S. Increased beta-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes. 1999;48(5):989–996.
    1. Campbell-Thompson M., Fu A., Kaddis J.S., Wasserfall C., Schatz D.A., Pugliese A. Insulitis and beta-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–731.
    1. Srikanta S., Ganda O.P., Gleason R.E., Jackson R.A., Soeldner J.S., Eisenbarth G.S. Pre-type I diabetes. Linear loss of beta cell response to intravenous glucose. Diabetes. 1984;33(8):717–720.
    1. Chase H.P., Cuthbertson D.D., Dolan L.M., Kaufman F., Krischer J.P., Schatz D.A. First-phase insulin release during the intravenous glucose tolerance test as a risk factor for type 1 diabetes. The Journal of Pediatrics. 2001;138(2):244–249.
    1. Keskinen P., Korhonen S., Kupila A., Veijola R., Erkkila S., Savolainen H. First-phase insulin response in young healthy children at genetic and immunological risk for Type I diabetes. Diabetologia. 2002;45(12):1639–1648.
    1. Koskinen M.K., Helminen O., Matomaki J., Aspholm S., Mykkanen J., Makinen M. Reduced beta-cell function in early preclinical type 1 diabetes. European Journal of Endocrinology. 2016;174(3):251–259.
    1. Sosenko J.M., Palmer J.P., Greenbaum C.J., Mahon J., Cowie C., Krischer J.P. Patterns of metabolic progression to type 1 diabetes in the diabetes prevention trial-type 1. Diabetes Care. 2006;29(3):643–649.
    1. Andersson C., Carlsson A., Cilio C., Cedervall E., Ivarsson S.A., Jonsdottir B. Glucose tolerance and beta-cell function in islet autoantibody-positive children recruited to a secondary prevention study. Pediatric Diabetes. 2013;14(5):341–349.
    1. Sosenko J.M., Skyler J.S., Beam C.A., Krischer J.P., Greenbaum C.J., Mahon J. Acceleration of the loss of the first-phase insulin response during the progression to type 1 diabetes in diabetes prevention trial-type 1 participants. Diabetes. 2013;62(12):4179–4183.
    1. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14(10):619–633.
    1. Gepts W., De Mey J. Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes. 1978;27(Suppl 1):251–261.
    1. Junker K., Egeberg J., Kromann H., Nerup J. An autopsy study of the islets of Langerhans in acute-onset juvenile diabetes mellitus. Acta Pathologica et Microbiologica Scandinavica. Section A, Pathology. 1977;85(5):699–706.
    1. Kloppel G., Drenck C.R., Oberholzer M., Heitz P.U. Morphometric evidence for a striking B-cell reduction at the clinical onset of type 1 diabetes. Virchows Archiv A Pathological Anatomy and Histopathology. 1984;403(4):441–452.
    1. Butler A.E., Galasso R., Meier J.J., Basu R., Rizza R.A., Butler P.C. Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia. 2007;50(11):2323–2331.
    1. Leete P., Willcox A., Krogvold L., Dahl-Jorgensen K., Foulis A.K., Richardson S.J. Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65(5):1362–1369.
    1. Sherry N.A., Tsai E.B., Herold K.C. Natural history of beta-cell function in type 1 diabetes. Diabetes. 2005;54(Suppl 2):S32–S39.
    1. Steele C., Hagopian W.A., Gitelman S., Masharani U., Cavaghan M., Rother K.I. Insulin secretion in type 1 diabetes. Diabetes. 2004;53(2):426–433.
    1. Klinke D.J., 2nd Age-corrected beta cell mass following onset of type 1 diabetes mellitus correlates with plasma C-peptide in humans. PLoS One. 2011;6(11):e26873.
    1. Barker A., Lauria A., Schloot N., Hosszufalusi N., Ludvigsson J., Mathieu C. Age-dependent decline of beta-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study. Diabetes, Obesity & Metabolism. 2014;16(3):262–267.
    1. Dost A., Herbst A., Kintzel K., Haberland H., Roth C.L., Gortner L. Shorter remission period in young versus older children with diabetes mellitus type 1. Experimental and Clinical Endocrinology & Diabetes. 2007;115(1):33–37.
    1. Akirav E., Kushner J.A., Herold K.C. Beta-cell mass and type 1 diabetes: going, going, gone? Diabetes. 2008;57(11):2883–2888.
    1. Chmelova H., Cohrs C.M., Chouinard J.A., Petzold C., Kuhn M., Chen C. Distinct roles of beta-cell mass and function during type 1 diabetes onset and remission. Diabetes. 2015;64(6):2148–2160.
    1. Tersey S.A., Nishiki Y., Templin A.T., Cabrera S.M., Stull N.D., Colvin S.C. Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes. 2012;61(4):818–827.
    1. Meier J.J., Lin J.C., Butler A.E., Galasso R., Martinez D.S., Butler P.C. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia. 2006;49(8):1838–1844.
    1. Willcox A., Richardson S.J., Bone A.J., Foulis A.K., Morgan N.G. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia. 2010;53(9):2020–2028.
    1. Levitt H.E., Cyphert T.J., Pascoe J.L., Hollern D.A., Abraham N., Lundell R.J. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia. 2011;54(3):572–582.
    1. Meier J.J., Bhushan A., Butler A.E., Rizza R.A., Butler P.C. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia. 2005;48(11):2221–2228.
    1. Poudel A., Savari O., Striegel D.A., Periwal V., Taxy J., Millis J.M. Beta-cell destruction and preservation in childhood and adult onset type 1 diabetes. Endocrine. 2015;49(3):693–702.
    1. Keenan H.A., Sun J.K., Levine J., Doria A., Aiello L.P., Eisenbarth G. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59(11):2846–2853.
    1. Coppieters K.T., Wiberg A., Amirian N., Kay T.W., von Herrath M.G. Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals. Diabetes/Metabolism Research and Reviews. 2011;27(8):746–754.
    1. O'Meara N.M., Sturis J., Herold K.C., Ostrega D.M., Polonsky K.S. Alterations in the patterns of insulin secretion before and after diagnosis of IDDM. Diabetes Care. 1995;18(4):568–571.
    1. Tsai E.B., Sherry N.A., Palmer J.P., Herold K.C. The rise and fall of insulin secretion in type 1 diabetes mellitus. Diabetologia. 2006;49(2):261–270.
    1. Greenbaum C.J., Anderson A.M., Dolan L.M., Mayer-Davis E.J., Dabelea D., Imperatore G. Preservation of beta-cell function in autoantibody-positive youth with diabetes. Diabetes Care. 2009;32(10):1839–1844.
    1. Sherr J.L., Ghazi T., Wurtz A., Rink L., Herold K.C. Characterization of residual beta cell function in long-standing type 1 diabetes. Diabetes/Metabolism Research and Reviews. 2014;30(2):154–162.
    1. Wang L., Lovejoy N.F., Faustman D.L. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35(3):465–470.
    1. Oram R.A., Jones A.G., Besser R.E., Knight B.A., Shields B.M., Brown R.J. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57(1):187–191.
    1. Oram R.A., McDonald T.J., Shields B.M., Hudson M.M., Shepherd M.H., Hammersley S. Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. Diabetes Care. 2015;38(2):323–328.
    1. Brush J.M. Initial stabilization of the diabetic child. American Journal of Diseases of Children. 1944;67(6):429–444.
    1. Jackson R.L., Boyd J.D., Smith T.E. Stabilization of the diabetic child. American Journal of Diseases of Children. 1940;59(2):332–341.
    1. Block M.B., Rosenfield R.L., Mako M.E., Steiner D.F., Rubenstein A.H. Sequential changes in beta-cell function in insulin-treated diabetic patients assessed by C-peptide immunoreactivity. The New England Journal of Medicine. 1973;288(22):1144–1148.
    1. Kaas A., Andersen M.L., Fredheim S., Hougaard P., Buschard K., Petersen J.S. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes. Pediatric Diabetes. 2012;13(1):51–58.
    1. Scholin A., Nystrom L., Arnqvist H., Bolinder J., Bjork E., Berne C. Proinsulin/C-peptide ratio, glucagon and remission in new-onset Type 1 diabetes mellitus in young adults. Diabetic Medicine. 2011;28(2):156–161.
    1. Abdul-Rasoul M., Habib H., Al-Khouly M. 'The honeymoon phase' in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatric Diabetes. 2006;7(2):101–107.
    1. Chase H.P., MacKenzie T.A., Burdick J., Fiallo-Scharer R., Walravens P., Klingensmith G. Redefining the clinical remission period in children with type 1 diabetes. Pediatric Diabetes. 2004;5(1):16–19.
    1. Muhammad B.J., Swift P.G., Raymond N.T., Botha J.L. Partial remission phase of diabetes in children younger than age 10 years. Archives of Disease in Childhood. 1999;80(4):367–369.
    1. Scholin A., Berne C., Schvarcz E., Karlsson F.A., Bjork E. Factors predicting clinical remission in adult patients with type 1 diabetes. Journal of Internal Medicine. 1999;245(2):155–162.
    1. Scholin A., Torn C., Nystrom L., Berne C., Arnqvist H., Blohme G. Normal weight promotes remission and low number of islet antibodies prolong the duration of remission in Type 1 diabetes. Diabetic Medicine. 2004;21(5):447–455.
    1. Karges B., Durinovic-Bello I., Heinze E., Boehm B.O., Debatin K.M., Karges W. Complete long-term recovery of beta-cell function in autoimmune type 1 diabetes after insulin treatment. Diabetes Care. 2004;27(5):1207–1208.
    1. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846.
    1. Meigs J.B., Wilson P.W., Fox C.S., Vasan R.S., Nathan D.M., Sullivan L.M. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. Journal of Clinical Endocrinology & Metabolism. 2006;91(8):2906–2912.
    1. Kahn S.E., Prigeon R.L., McCulloch D.K., Boyko E.J., Bergman R.N., Schwartz M.W. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–1672.
    1. Ogilvie R.F. The islands of langerhans in 19 cases of obesity. Journal of Pathology and Bacteriology. 1933;37(3):473–481.
    1. Yoon K.H., Ko S.H., Cho J.H., Lee J.M., Ahn Y.B., Song K.H. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. Journal of Clinical Endocrinology & Metabolism. 2003;88(5):2300–2308.
    1. Hanley S.C., Austin E., Assouline-Thomas B., Kapeluto J., Blaichman J., Moosavi M. {beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology. 2010;151(4):1462–1472.
    1. Matsumoto I., Sawada T., Nakano M., Sakai T., Liu B., Ansite J.D. Improvement in islet yield from obese donors for human islet transplants. Transplantation. 2004;78(6):880–885.
    1. Brandhorst H., Brandhorst D., Hering B.J., Federlin K., Bretzel R.G. Body mass index of pancreatic donors: a decisive factor for human islet isolation. Experimental and Clinical Endocrinology & Diabetes. 1995;103(Suppl 2):23–26.
    1. Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–110.
    1. Rahier J., Guiot Y., Goebbels R.M., Sempoux C., Henquin J.C. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes, Obesity & Metabolism. 2008;10(Suppl 4):32–42.
    1. Saisho Y., Butler A.E., Manesso E., Elashoff D., Rizza R.A., Butler P.C. Beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36(1):111–117.
    1. Mezza T., Muscogiuri G., Sorice G.P., Clemente G., Hu J., Pontecorvi A. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes. 2014;63(3):994–1007.
    1. Yoneda S., Uno S., Iwahashi H., Fujita Y., Yoshikawa A., Kozawa J. Predominance of beta-cell neogenesis rather than replication in humans with an impaired glucose tolerance and newly diagnosed diabetes. Journal of Clinical Endocrinology & Metabolism. 2013;98(5):2053–2061.
    1. Ferrannini E., Natali A., Bell P., Cavallo-Perin P., Lalic N., Mingrone G. Insulin resistance and hypersecretion in obesity. European group for the Study of Insulin Resistance (EGIR) The Journal of Clinical Investigation. 1997;100(5):1166–1173.
    1. Seltzer H.S., Allen E.W., Herron A.L., Brennan M.T. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. The Journal of Clinical Investigation. 1967;46:323–335.
    1. Lillioja S., Mott D.M., Spraul M., Ferraro R., Foley J.E., Ravussin E. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. The New England Journal of Medicine. 1993;329(27):1988–1992.
    1. Camastra S., Manco M., Mari A., Baldi S., Gastaldelli A., Greco A.V. beta-cell function in morbidly obese subjects during free living: long-term effects of weight loss. Diabetes. 2005;54(8):2382–2389.
    1. Polonsky K.S., Given B.D., Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. The Journal of Clinical Investigation. 1988;81(2):442–448.
    1. Perley M., Kipnis D.M. Plasma insulin responses to glucose and tolbutamide of normal weight and obese diabetic and nondiabetic subjects. Diabetes. 1966;15(12):867–874.
    1. Mezghenna K., Pomies P., Chalancon A., Castex F., Leroy J., Niclauss N. Increased neuronal nitric oxide synthase dimerisation is involved in rat and human pancreatic beta cell hyperactivity in obesity. Diabetologia. 2011;54(11):2856–2866.
    1. Rahier J., Goebbels R.M., Henquin J.C. Cellular composition of the human diabetic pancreas. Diabetologia. 1983;24(5):366–371.
    1. Guiot Y., Sempoux C., Moulin P., Rahier J. No decrease of the beta-cell mass in type 2 diabetic patients. Diabetes. 2001;50(Suppl 1):S188.
    1. Sakuraba H., Mizukami H., Yagihashi N., Wada R., Hanyu C., Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45(1):85–96.
    1. Inaishi J., Saisho Y., Sato S., Kou K., Murakami R., Watanabe Y. Effects of Obesity and diabetes on alpha- and beta-cell mass in surgically resected human pancreas. Journal of Clinical Endocrinology & Metabolism. 2016;101(7):2874–2882.
    1. Kloppel G., Lohr M., Habich K., Oberholzer M., Heitz P.U. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Survey and Synthesis of Pathology Research. 1985;4(2):110–125.
    1. Clark A., Wells C.A., Buley I.D., Cruickshank J.K., Vanhegan R.I., Matthews D.R. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Research. 1988;9(4):151–159.
    1. Deng S., Vatamaniuk M., Huang X., Doliba N., Lian M.M., Frank A. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes. 2004;53(3):624–632.
    1. Marchetti P., Bugliani M., Lupi R., Marselli L., Masini M., Boggi U. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia. 2007;50(12):2486–2494.
    1. Marchetti P., Del Guerra S., Marselli L., Lupi R., Masini M., Pollera M. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. Journal of Clinical Endocrinology & Metabolism. 2004;89(11):5535–5541.
    1. Gastaldelli A., Ferrannini E., Miyazaki Y., Matsuda M., DeFronzo R.A., San Antonio metabolism study Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia. 2004;47(1):31–39.
    1. Holman R.R. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Research and Clinical Practice. 1998;40(Suppl):S21–S25.
    1. Jensen C.C., Cnop M., Hull R.L., Fujimoto W.Y., Kahn S.E. Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. Diabetes. 2002;51(7):2170–2178.
    1. Ward W.K., Bolgiano D.C., McKnight B., Halter J.B., Porte D., Jr. Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1984;74(4):1318–1328.
    1. Ferrannini E., Gastaldelli A., Miyazaki Y., Matsuda M., Mari A., DeFronzo R.A. Beta-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. Journal of Clinical Endocrinology & Metabolism. 2005;90(1):493–500.
    1. Osei K., Gaillard T., Schuster D.P. Pathogenetic mechanisms of impaired glucose tolerance and type II diabetes in African-Americans. The significance of insulin secretion, insulin sensitivity, and glucose effectiveness. Diabetes Care. 1997;20(3):396–404.
    1. Kendall D.M., Sutherland D.E., Najarian J.S., Goetz F.C., Robertson R.P. Effects of hemipancreatectomy on insulin secretion and glucose tolerance in healthy humans. The New England Journal of Medicine. 1990;322(13):898–903.
    1. Robertson R.P., Lanz K.J., Sutherland D.E., Seaquist E.R. Relationship between diabetes and obesity 9 to 18 years after hemipancreatectomy and transplantation in donors and recipients. Transplantation. 2002;73(5):736–741.
    1. Brunzell J.D., Robertson R.P., Lerner R.L., Hazzard W.R., Ensinck J.W., Bierman E.L. Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. Journal of Clinical Endocrinology & Metabolism. 1976;42(2):222–229.
    1. Lang D.A., Matthews D.R., Burnett M., Turner R.C. Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes. 1981;30(5):435–439.
    1. Polonsky K.S., Given B.D., Hirsch L.J., Tillil H., Shapiro E.T., Beebe C. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1988;318(19):1231–1239.
    1. Schauer P.R., Mingrone G., Ikramuddin S., Wolfe B. Clinical Outcomes of metabolic surgery: efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care. 2016;39(6):902–911.
    1. Jorgensen N.B., Jacobsen S.H., Dirksen C., Bojsen-Moller K.N., Naver L., Hvolris L. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. American Journal of Physiology. Endocrinology and Metabolism. 2012;303(1):E122–E131.
    1. Guidone C., Manco M., Valera-Mora E., Iaconelli A., Gniuli D., Mari A. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55(7):2025–2031.
    1. Polyzogopoulou E.V., Kalfarentzos F., Vagenakis A.G., Alexandrides T.K. Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with type 2 diabetes following bariatric surgery. Diabetes. 2003;52(5):1098–1103.
    1. Malandrucco I., Pasqualetti P., Giordani I., Manfellotto D., De Marco F., Alegiani F. Very-low-calorie diet: a quick therapeutic tool to improve beta cell function in morbidly obese patients with type 2 diabetes. American Journal of Clinical Nutrition. 2012;95(3):609–613.
    1. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C., Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506–2514.
    1. Accili D., Talchai S.C., Kim-Muller J.Y., Cinti F., Ishida E., Ordelheide A.M. When beta-cells fail: lessons from dedifferentiation. Diabetes, Obesity & Metabolism. 2016;18(Suppl 1):117–122.
    1. Talchai C., Xuan S., Lin H.V., Sussel L., Accili D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell. 2012;150(6):1223–1234.
    1. Wang Z., York N.W., Nichols C.G., Remedi M.S. Pancreatic beta cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metabolism. 2014;19(5):872–882.
    1. Butler A.E., Dhawan S., Hoang J., Cory M., Zeng K., Fritsch H. Beta-cell deficit in obese type 2 diabetes, a minor role of beta-cell dedifferentiation and degranulation. Journal of Clinical Endocrinology & Metabolism. 2016;101(2):523–532.
    1. Cinti F., Bouchi R., Kim-Muller J.Y., Ohmura Y., Sandoval P.R., Masini M. Evidence of beta-cell dedifferentiation in human type 2 diabetes. Journal of Clinical Endocrinology & Metabolism. 2016;101(3):1044–1054.
    1. Md Moin A.S., Dhawan S., Cory M., Butler P.C., Rizza R.A., Butler A.E. Increased frequency of hormone negative and polyhormonal endocrine cells in lean individuals with type 2 diabetes. Journal of Clinical Endocrinology & Metabolism. 2016;101(10):3628–3636.
    1. Guo S., Dai C., Guo M., Taylor B., Harmon J.S., Sander M. Inactivation of specific beta cell transcription factors in type 2 diabetes. The Journal of Clinical Investigation. 2013;123(8):3305–3316.
    1. Meier J.J., Menge B.A., Breuer T.G., Muller C.A., Tannapfel A., Uhl W. Functional assessment of pancreatic beta-cell area in humans. Diabetes. 2009;58(7):1595–1603.
    1. Weyer C., Bogardus C., Mott D.M., Pratley R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. The Journal of Clinical Investigation. 1999;104(6):787–794.
    1. Porksen N. The in vivo regulation of pulsatile insulin secretion. Diabetologia. 2002;45(1):3–20.
    1. Porksen N., Hollingdal M., Juhl C., Butler P., Veldhuis J.D., Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes. 2002;51(Suppl 1):S245–S254.
    1. Matveyenko A.V., Liuwantara D., Gurlo T., Kirakossian D., Dalla Man C., Cobelli C. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes. 2012;61(9):2269–2279.
    1. Leahy J.L., Bonner-Weir S., Weir G.C. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992;15(3):442–455.
    1. Leahy J.L., Hirsch I.B., Peterson K.A., Schneider D. Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus. Journal of Clinical Endocrinology & Metabolism. 2010;95(9):4206–4216.
    1. Meier J.J., Bonadonna R.C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes. Diabetes Care. 2013;36(Suppl 2):S113–S119.
    1. Kahn S.E., Zraika S., Utzschneider K.M., Hull R.L. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia. 2009;52(6):1003–1012.
    1. Pancreatic beta-cell mass or beta-cell function? That is the question!, (2008).
    1. Matveyenko A.V., Butler P.C. Relationship between beta-cell mass and diabetes onset. Diabetes, Obesity & Metabolism. 2008;10(Suppl 4):23–31.
    1. Defronzo R.A. Banting lecture. from the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795.
    1. Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–1336.
    1. Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., Duren W.L. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–1345.
    1. Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341.
    1. Krogvold L., Skog O., Sundstrom G., Edwin B., Buanes T., Hanssen K.F. Function of isolated pancreatic islets from patients at onset of type 1 diabetes: insulin secretion can be restored after some days in a nondiabetogenic environment in vitro: results from the DiViD Study. Diabetes. 2015;64(7):2506–2512.
    1. Lupi R., Marselli L., Dionisi S., Del Guerra S., Boggi U., Del Chiaro M. Improved insulin secretory function and reduced chemotactic properties after tissue culture of islets from type 1 diabetic patients. Diabetes/Metabolism Research and Reviews. 2004;20(3):246–251.
    1. Conget I., Fernandez-Alvarez J., Ferrer J., Sarri Y., Novials A., Somoza N. Human pancreatic islet function at the onset of type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(4):358–360.
    1. Johnson J.D., Misler S. Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(22):14566–14571.
    1. De Marchi U., Thevenet J., Hermant A., Dioum E., Wiederkehr A. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. The Journal of Biological Chemistry. 2014;289(13):9182–9194.
    1. Dolai S., Xie L., Zhu D., Liang T., Qin T., Xie H. Synaptotagmin-7 functions to replenish insulin granules for exocytosis in human islet beta-cells. Diabetes. 2016;65(7):1962–1976.
    1. Braun M., Ramracheya R., Bengtsson M., Zhang Q., Karanauskaite J., Partridge C. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes. 2008;57(6):1618–1628.
    1. Brissova M., Fowler M.J., Nicholson W.E., Chu A., Hirshberg B., Harlan D.M. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. The Journal of Histochemistry and Cytochemistry. 2005;53(9):1087–1097.
    1. Arnush M., Heitmeier M.R., Scarim A.L., Marino M.H., Manning P.T., Corbett J.A. IL-1 produced and released endogenously within human islets inhibits beta cell function. The Journal of Clinical Investigation. 1998;102(3):516–526.
    1. Dorrell C., Schug J., Lin C.F., Canaday P.S., Fox A.J., Smirnova O. Transcriptomes of the major human pancreatic cell types. Diabetologia. 2011;54(11):2832–2844.
    1. Cnop M., Abdulkarim B., Bottu G., Cunha D.A., Igoillo-Esteve M., Masini M. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes. 2014;63(6):1978–1993.
    1. Fadista J., Vikman P., Laakso E.O., Mollet I.G., Esguerra J.L., Taneera J. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(38):13924–13929.
    1. Bugliani M., Liechti R., Cheon H., Suleiman M., Marselli L., Kirkpatrick C. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Molecular and Cellular Endocrinology. 2013;367(1–2):1–10.
    1. Wang Y.J., Schug J., Won K.J., Liu C., Naji A., Avrahami D. Single-cell transcriptomics of the human endocrine pancreas. Diabetes. 2016;65(10):3028–3038.
    1. Li J., Klughammer J., Farlik M., Penz T., Spittler A., Barbieux C. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Reports. 2016;17(2):178–187.
    1. Muraro M.J., Dharmadhikari G., Grun D., Groen N., Dielen T., Jansen E. A single-cell transcriptome atlas of the human pancreas. Cell Systems. 2016;3(4) 385–394 e383.
    1. Segerstolpe A., Palasantza A., Eliasson P., Andersson E.M., Andreasson A.C., Sun X. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metabolism. 2016;24(4):593–607.
    1. Lawlor N., George J., Bolisetty M., Kursawe R., Sun L.V.S. Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Research. 2016
    1. Xin Y., Kim J., Okamoto H., Ni M., Wei Y., Adler C. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metabolism. 2016;24(4):608–615.
    1. Arystarkhova E., Liu Y.B., Salazar C., Stanojevic V., Clifford R.J., Kaplan J.H. Hyperplasia of pancreatic beta cells and improved glucose tolerance in mice deficient in the FXYD2 subunit of Na,K-ATPase. The Journal of Biological Chemistry. 2013;288(10):7077–7085.
    1. Nyblom H.K., Bugliani M., Fung E., Boggi U., Zubarev R., Marchetti P. Apoptotic, regenerative, and immune-related signaling in human islets from type 2 diabetes individuals. Journal of Proteome Research. 2009;8(12):5650–5656.
    1. Wang Y.J., Golson M.L., Schug J., Traum D., Liu C., Vivek K. Single-cell mass cytometry analysis of the human endocrine pancreas. Cell Metabolism. 2016;24(4):616–626.
    1. Benthuysen J.R., Carrano A.C., Sander M. Advances in beta cell replacement and regeneration strategies for treating diabetes. The Journal of Clinical Investigation. 2016;126(10):3651–3660.
    1. Pagliuca F.W., Millman J.R., Gurtler M., Segel M., Van Dervort A., Ryu J.H. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–439.
    1. Rezania A., Bruin J.E., Arora P., Rubin A., Batushansky I., Asadi A. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology. 2014;32(11):1121–1133.
    1. Russ H.A., Parent A.V., Ringler J.J., Hennings T.G., Nair G.G., Shveygert M. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. The EMBO Journal. 2015;34(13):1759–1772.
    1. Vegas A.J., Veiseh O., Gurtler M., Millman J.R., Pagliuca F.W., Bader A.R. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nature Medicine. 2016;22(3):306–311.
    1. Millman J.R., Xie C., Van Dervort A., Gurtler M., Pagliuca F.W., Melton D.A. Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nature Communications. 2016;7:11463.
    1. Boj S.F., Hwang C.I., Baker L.A., Chio, Engle D.D., Corbo V. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–338.
    1. Huang L., Holtzinger A., Jagan I., BeGora M., Lohse I., Ngai N. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nature Medicine. 2015;21(11):1364–1371.
    1. Hohwieler M., Illing A., Hermann P.C., Mayer T., Stockmann M., Perkhofer L. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 2017;66(3):473–486.
    1. Grapin-Botton A. Three-dimensional pancreas organogenesis models. Diabetes, Obesity & Metabolism. 2016;18(Suppl 1):33–40.
    1. Dorrell C., Schug J., Canaday P.S., Russ H.A., Tarlow B.D., Grompe M.T. Human islets contain four distinct subtypes of beta cells. Nature Communications. 2016;7:11756.
    1. Arda H.E., Li L., Tsai J., Torre E.A., Rosli Y., Peiris H. Age-dependent pancreatic gene regulation reveals mechanisms governing human beta cell function. Cell Metabolism. 2016;23(5):909–920.
    1. Marselli L., Suleiman M., Masini M., Campani D., Bugliani M., Syed F. Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia. 2014;57(2):362–365.
    1. Speier S., Rupnik M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Archiv. 2003;446(5):553–558.
    1. Poosti F., Pham B.T., Oosterhuis D., Poelstra K., van Goor H., Olinga P. Precision-cut kidney slices (PCKS) to study development of renal fibrosis and efficacy of drug targeting ex vivo. Disease Models & Mechanisms. 2015;8(10):1227–1236.
    1. de Graaf I.A., Olinga P., de Jager M.H., Merema M.T., de Kanter R., van de Kerkhof E.G. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nature Protocols. 2010;5(9):1540–1551.
    1. Wang K., Lee P., Mirams G.R., Sarathchandra P., Borg T.K., Gavaghan D.J. Cardiac tissue slices: preparation, handling, and successful optical mapping. American Journal of Physiology. Heart and Circulatory Physiology. 2015;308(9):H1112–H1125.
    1. Rodriguez-Diaz R., Speier S., Molano R.D., Formoso A., Gans I., Abdulreda M.H. Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:21456–21461.
    1. Meneghel-Rozzo T., Rozzo A., Poppi L., Rupnik M. In vivo and in vitro development of mouse pancreatic beta-cells in organotypic slices. Cell & Tissue Research. 2004;316(3):295–303.
    1. Rose T., Efendic S., Rupnik M. Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. The Journal of General Physiology. 2007;129(6):493–508.
    1. Speier S., Gjinovci A., Charollais A., Meda P., Rupnik M. Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes. 2007;56(4):1078–1086.
    1. Speier S., Yang S.B., Sroka K., Rose T., Rupnik M. KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP. Molecular and Cellular Endocrinology. 2005;230(1–2):51–58.
    1. Huang Y.C., Rupnik M., Gaisano H.Y. Unperturbed islet alpha-cell function examined in mouse pancreas tissue slices. Journal of Physiology. 2011;589(Pt 2):395–408.
    1. Huang Y.C., Rupnik M.S., Karimian N., Herrera P.L., Gilon P., Feng Z.P. In situ electrophysiological examination of pancreatic alpha cells in the streptozotocin-induced diabetes model, revealing the cellular basis of glucagon hypersecretion. Diabetes. 2013;62(2):519–530.
    1. Dolensek J., Stozer A., Skelin Klemen M., Miller E.W., Slak Rupnik M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLoS One. 2013;8(12):e82374.
    1. Marciniak A., Selck C., Friedrich B., Speier S. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ. PLoS One. 2013;8(11):e78706.
    1. Stozer A., Dolensek J., Rupnik M.S. Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices. PLoS One. 2013;8(1):e54638.
    1. Stozer A., Gosak M., Dolensek J., Perc M., Marhl M., Rupnik M.S. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Computational Biology. 2013;9(2):e1002923.
    1. Marciniak A., Cohrs C.M., Tsata V., Chouinard J.A., Selck C., Stertmann J. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nature Protocols. 2014;9(12):2809–2822.
    1. Cohrs C.M., Chen C., Jahn S.R., Stertmann J., Chmelova H., Weitz J. Vessel network architecture of adult human islets promotes distinct cell-cell interactions in situ and is altered after transplantation. Endocrinology. 2017 [Epub ahead of print]
    1. Karimian N., Qin T., Liang T., Osundiji M., Huang Y., Teich T. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes. 2013;62(8):2968–2977.
    1. Ehehalt F., Sturm D., Rosler M., Distler M., Weitz J., Kersting S. Blood glucose homeostasis in the course of partial pancreatectomy–evidence for surgically reversible diabetes induced by cholestasis. PLoS One. 2015;10(8):e0134140.
    1. Kilimnik G., Jo J., Periwal V., Zielinski M.C., Hara M. Quantification of islet size and architecture. Islets. 2012;4(2):167–172.
    1. Levy J.C., Matthews D.R., Hermans M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2192.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419.
    1. Osundiji M.A., Lam D.D., Shaw J., Yueh C.Y., Markkula S.P., Hurst P. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes. 2012;61(2):321–328.
    1. Nano R., Melzi R., Mercalli A., Balzano G., Scavini M., Bonadonna R. Islet volume and indexes of beta-cell function in humans. Cell Transplantation. 2016;25(3):491–501.
    1. Robertson R.P., Bogachus L.D., Oseid E., Parazzoli S., Patti M.E., Rickels M.R. Assessment of beta-cell mass and alpha- and beta-cell survival and function by arginine stimulation in human autologous islet recipients. Diabetes. 2015;64(2):565–572.
    1. Ryan E.A., Lakey J.R., Paty B.W., Imes S., Korbutt G.S., Kneteman N.M. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes. 2002;51(7):2148–2157.
    1. Teuscher A.U., Kendall D.M., Smets Y.F., Leone J.P., Sutherland D.E., Robertson R.P. Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes. 1998;47(3):324–330.
    1. Meier J.J., Breuer T.G., Bonadonna R.C., Tannapfel A., Uhl W., Schmidt W.E. Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia. 2012;55(5):1346–1354.
    1. Brelje T.C., Scharp D.W., Lacy P.E., Ogren L., Talamantes F., Robertson M. Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology. 1993;132(2):879–887.
    1. Gravena C., Mathias P.C., Ashcroft S.J. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. Journal of Endocrinology. 2002;173(1):73–80.
    1. Henquin J.C., Dufrane D., Nenquin M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes. 2006;55(12):3470–3477.
    1. Farilla L., Bulotta A., Hirshberg B., Li Calzi S., Khoury N., Noushmehr H. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–5158.
    1. Lupi R., Marchetti P., Giannarelli R., Coppelli A., Tellini C., Del Guerra S. Effects of glibenclamide and metformin (alone or in combination) on insulin release from isolated human pancreatic islets. Acta Diabetologica. 1997;34(1):46–48.
    1. Butler A.E., Cao-Minh L., Galasso R., Rizza R.A., Corradin A., Cobelli C. Adaptive changes in pancreatic beta cell fractional area and beta cell turnover in human pregnancy. Diabetologia. 2010;53(10):2167–2176.
    1. Sweet I.R., Cook D.L., Lernmark A., Greenbaum C.J., Krohn K.A. Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technology & Therapeutics. 2004;6(5):652–659.
    1. Malosio M.L., Esposito A., Brigatti C., Palmisano A., Piemonti L., Nano R. MR imaging monitoring of iron-labeled pancreatic islets in a small series of patients: islet fate in successful, unsuccessful, and autotransplantation. Cell Transplantation. 2015;24(11):2285–2296.
    1. Saudek F., Jirak D., Girman P., Herynek V., Dezortova M., Kriz J. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 2010;90(12):1602–1606.
    1. Toso C., Vallee J.P., Morel P., Ris F., Demuylder-Mischler S., Lepetit-Coiffe M. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. American Journal of Transplantation. 2008;8(3):701–706.
    1. Bennet W., Groth C.G., Larsson R., Nilsson B., Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Upsala Journal of Medical Sciences. 2000;105(2):125–133.
    1. Leoni L., Serai S.D., Haque M.E., Magin R.L., Roman B.B. Functional MRI characterization of isolated human islet activation. NMR in Biomedicine. 2010;23(10):1158–1165.
    1. Botsikas D., Terraz S., Vinet L., Lamprianou S., Becker C.D., Bosco D. Pancreatic magnetic resonance imaging after manganese injection distinguishes type 2 diabetic and normoglycemic patients. Islets. 2012;4(3):243–248.
    1. Eich T., Eriksson O., Lundgren T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. The New England Journal of Medicine. 2007;356(26):2754–2755.
    1. Eriksson O., Selvaraju R., Eich T., Willny M., Brismar T.B., Carlbom L. Positron emission tomography to assess the outcome of intraportal islet transplantation. Diabetes. 2016;65(9):2482–2489.
    1. Goland R., Freeby M., Parsey R., Saisho Y., Kumar D., Simpson N. 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. Journal of Nuclear Medicine. 2009;50(3):382–389.
    1. Normandin M.D., Petersen K.F., Ding Y.S., Lin S.F., Naik S., Fowles K. In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. Journal of Nuclear Medicine. 2012;53(6):908–916.
    1. Eriksson O., Espes D., Selvaraju R.K., Jansson E., Antoni G., Sorensen J. Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes. 2014;63(10):3428–3437.
    1. Brom M., Woliner-van der Weg W., Joosten L., Frielink C., Bouckenooghe T., Rijken P. Non-invasive quantification of the beta cell mass by SPECT with (1)(1)(1)In-labelled exendin. Diabetologia. 2014;57(5):950–959.
    1. Mandel T.E., Hoffman L., Collier S., Carter W.M., Koulmanda M. Organ culture of fetal mouse and fetal human pancreatic islets for allografting. Diabetes. 1982;31(Suppl 4):39–47.
    1. Hayek A., Beattie G.M. Experimental transplantation of human fetal and adult pancreatic islets. Journal of Clinical Endocrinology & Metabolism. 1997;82(8):2471–2475.
    1. Fransson M., Brannstrom J., Duprez I., Essand M., Le Blanc K., Korsgren O. Mesenchymal stromal cells support endothelial cell interactions in an intramuscular islet transplantation model. Regenerative Medicine Research. 2015;3:1.
    1. Meier R.P., Seebach J.D., Morel P., Mahou R., Borot S., Giovannoni L. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow. PLoS One. 2014;9(3):e91268.
    1. Zaldumbide A., Alkemade G., Carlotti F., Nikolic T., Abreu J.R., Engelse M.A. Genetically engineered human islets protected from CD8-mediated autoimmune destruction in vivo. Molecular Therapy. 2013;21(8):1592–1601.
    1. Gargani S., Thevenet J., Yuan J.E., Lefebvre B., Delalleau N., Gmyr V. Adaptive changes of human islets to an obesogenic environment in the mouse. Diabetologia. 2013;56(2):350–358.
    1. Westermark P., Eizirik D.L., Pipeleers D.G., Hellerstrom C., Andersson A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia. 1995;38(5):543–549.
    1. Shiroki R., Poindexter N.J., Woodle E.S., Hussain M.S., Mohanakumar T., Scharp D.W. Human peripheral blood lymphocyte reconstituted severe combined immunodeficient (hu-PBL-SCID) mice. A model for human islet allograft rejection. Transplantation. 1994;57(11):1555–1562.
    1. Wang P., Alvarez-Perez J.C., Felsenfeld D.P., Liu H., Sivendran S., Bender A. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nature Medicine. 2015;21(4):383–388.
    1. Dai C., Kayton N.S., Shostak A., Poffenberger G., Cyphert H.A., Aramandla R. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. The Journal of Clinical Investigation. 2016;126(5):1857–1870.
    1. Abdulreda M.H., Rodriguez-Diaz R., Caicedo A., Berggren P.O. Liraglutide compromises pancreatic beta cell function in a humanized mouse model. Cell Metabolism. 2016;23(3):541–546.
    1. Fowler M., Virostko J., Chen Z., Poffenberger G., Radhika A., Brissova M. Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation. 2005;79(7):768–776.
    1. Berclaz C., Schmidt-Christensen A., Szlag D., Extermann J., Hansen L., Bouwens A. Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging. Diabetologia. 2016;59(3):550–559.
    1. Chen C., Chmelova H., Cohrs C.M., Chouinard J.A., Jahn S.R., Stertmann J. Alterations in beta-cell calcium dynamics and efficacy outweigh islet mass adaptation in compensation of insulin resistance and prediabetes onset. Diabetes. 2016;65(9):2676–2685.
    1. Speier S., Nyqvist D., Cabrera O., Yu J., Molano R.D., Pileggi A. Noninvasive in vivo imaging of pancreatic islet cell biology. Nature Medicine. 2008;14(5):574–578.
    1. Speier S. Experimental approaches for high-resolution in vivo imaging of islet of Langerhans biology. Current Diabetes Reports. 2011;11(5):420–425.

Source: PubMed

3
Abonnieren