Oxidative Stress in Pancreatic Beta Cell Regeneration

Jingjing Wang, Hongjun Wang, Jingjing Wang, Hongjun Wang

Abstract

Pancreatic β cell neogenesis and proliferation during the neonatal period are critical for the generation of sufficient pancreatic β cell mass/reserve and have a profound impact on long-term protection against type 2 diabetes (T2D). Oxidative stress plays an important role in β cell neogenesis, proliferation, and survival under both physiological and pathophysiological conditions. Pancreatic β cells are extremely susceptible to oxidative stress due to a high endogenous production of reactive oxygen species (ROS) and a low expression of antioxidative enzymes. In this review, we summarize studies describing the critical roles and the mechanisms of how oxidative stress impacts β cell neogenesis and proliferation. In addition, the effects of antioxidant supplements on reduction of oxidative stress and increase of β cell proliferation are discussed. Exploring the roles and the potential therapeutic effects of antioxidants in the process of β cell regeneration would provide novel perspectives to preserve and/or expand pancreatic β cell mass for the treatment of T2D.

Figures

Figure 1
Figure 1
β cells are extremely susceptible to oxidative stress. Two major factors render β cells prone to the risk of oxidative stress: a high endogenous generation of ROS induced by stimuli including hyperglycemia, hyperlipidemia, hypoxia, ER stress, and low expressions of essential antioxidant enzymes such as SOD, catalase, and GPx. Percentages refer to the amount of mRNA expression in pancreatic islets versus liver tissue in rats.
Figure 2
Figure 2
Effects of oxidative stress in β cell neogenesis. (a) An overview of the ROS expression levels at distinct stages of β cell development in mouse embryo. The presence of ROS (E12.5–E17.5) largely overlaps with the Ngn3 expression period (E14–E18.5). (b) Schematic diagram of effects of ROS on β cell neogenesis. On the one hand, hypoxia as an important inducer of ROS activates HIF-1α which suppresses Ngn3 expression, which results in impaired β cell neogenesis. On the other hand, ROS directly upregulates Ngn3 and Pdx-1 in β cell development, and NADPH oxidase seems to be a crucial source of ROS in this process, leading to increased β cell neogenesis.
Figure 3
Figure 3
Oxidative stress plays critical roles in β cell cycle. On cell-cycle regulators, accumulated ROS in beta cells suppressed the expression of cyclins D1 and D2, as well as increased cell-cycle inhibitors such as p21 and p27, leading to decreased β cell proliferation rate. Meanwhile, ROS promoted nuclear the translocation/activation of FoxO1, which in turn prevents β cell replication through the inhibition of Pdx-1 and possibly other β cell-related gene transcriptions. Furthermore, ROS also directly downregulates transcription factors such as Pdx-1, MafA, Nkx6.1, and Ngn3 that are crucial in beta cell proliferation and differentiation.

References

    1. Newbern D., Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Current Opinion in Endocrinology, Diabetes, and Obesity. 2011;18:409–416. doi: 10.1097/MED.0b013e32834c800d.
    1. Sachdeva M. M., Stoffers D. A. Minireview: meeting the demand for insulin: molecular mechanisms of adaptive postnatal beta-cell mass expansion. Molecular Endocrinology (Baltimore, Md.) 2009;23:747–758. doi: 10.1210/me.2008-0400.
    1. Butler A. E., Janson J., Bonner-Weir S., Ritzel R., Rizza R. A., Butler P. C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–110.
    1. Tiwari B. K., Pandey K. B., Abidi A. B., Rizvi S. I. Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers. 2013;2013:8. doi: 10.1155/2013/378790.378790
    1. Robertson R. P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. Journal of Biological Chemistry. 2004;279:42351–42354. doi: 10.1074/jbc.R400019200.
    1. Gerber P. A., Rutter G. A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidants & Redox Signaling. 2017;26:501–518. doi: 10.1089/ars.2016.6755.
    1. Forman H. J., Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. American Journal of Respiratory and Critical Care Medicine. 2002;166:S4–S8. doi: 10.1164/rccm.2206007.
    1. Zhang W., Feng D., Li Y., Iida K., McGrath B., Cavener D. R. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metabolism. 2006;4:491–497. doi: 10.1016/j.cmet.2006.11.002.
    1. Tiedge M., Lortz S., Drinkgern J., Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes. 1997;46:1733–1742. doi: 10.2337/diab.46.11.1733.
    1. Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Biology and Medicine. 1996;20:463–466. doi: 10.1016/0891-5849(96)02051-5.
    1. Tiedge M., Lortz S., Munday R., Lenzen S. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes. 1998;47:1578–1585. doi: 10.2337/diabetes.47.10.1578.
    1. Li N., Frigerio F., Maechler P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochemical Society Transactions. 2008;36:930–934. doi: 10.1042/BST0360930.
    1. Robertson R. P., Harmon J., Tran P. O., Tanaka Y., Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52:581–587. doi: 10.2337/diabetes.52.3.581.
    1. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412.
    1. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. The Biochemical Journal. 1987;245:243–250.
    1. Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. The Biochemical Journal. 1988;256:205–212.
    1. Kaneto H., Xu G., Song K.-H., et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. Journal of Biological Chemistry. 2001;276:31099–31104. doi: 10.1074/jbc.M104115200.
    1. Sharma R. B., Alonso L. C. Lipotoxicity in the pancreatic beta cell: not just survival and function, but proliferation as well? Current Diabetes Reports. 2014;14:p. 492.
    1. Koulajian K., Ivovic A., Ye K., et al. Overexpression of glutathione peroxidase 4 prevents beta-cell dysfunction induced by prolonged elevation of lipids in vivo. American Journal of Physiology Endocrinology and Metabolism. 2013;305:E254–E262. doi: 10.1152/ajpendo.00481.2012.
    1. Morgan D., Oliveira-Emilio H. R., Keane D., et al. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia. 2007;50:359–369. doi: 10.1007/s00125-006-0462-6.
    1. Koulajian K., Desai T., Liu G. C., et al. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia. 2013;56:1078–1087. doi: 10.1007/s00125-013-2858-4.
    1. Koshkin V., Wang X., Scherer P. E., Chan C. B., Wheeler M. B. Mitochondrial functional state in clonal pancreatic β-cells exposed to free fatty acids. Journal of Biological Chemistry. 2003;278:19709–19715. doi: 10.1074/jbc.M209709200.
    1. Bensellam M., Duvillié B., Rybachuk G., et al. Glucose-induced O2 consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic beta-cells. PloS One. 2012;7, article e29807 doi: 10.1371/journal.pone.0029807.
    1. Li X., Zhang L., Meshinchi S., et al. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–2973. doi: 10.2337/db06-0733.
    1. Solaini G., Baracca A., Lenaz G., Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta. 2010;1797:1171–1177. doi: 10.1016/j.bbabio.2010.02.011.
    1. Hasnain S. Z., Prins J. B., McGuckin M. A. Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. Journal of Molecular Endocrinology. 2016;56:R33–R54.
    1. Cao S. S., Kaufman R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & Redox Signaling. 2014;21:396–413. doi: 10.1089/ars.2014.5851.
    1. Freedman M. S., Bar-Or A., Atkins H. L., et al. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the international MSCT study group. Multiple Sclerosis. 2010;16:503–510. doi: 10.1177/1352458509359727.
    1. Gu G., Brown J. R., Melton D. A. Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mechanisms of Development. 2003;120:35–43. doi: 10.1016/S0925-4773(02)00330-1.
    1. Jensen J. Gene regulatory factors in pancreatic development. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2004;229:176–200. doi: 10.1002/dvdy.10460.
    1. Murtaugh L. C. Pancreas and beta-cell development: from the actual to the possible. Development. 2007;134:427–438. doi: 10.1242/dev.02770.
    1. McEvoy R. C., Madson K. L. Pancreatic insulin-, glucagon-, and somatostatin-positive islet cell populations during the perinatal development of the rat. I. Morphometric Quantitation. Biology of the Neonate. 1980;38:248–254.
    1. Stefan Y., Grasso S., Perrelet A., Orci L. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes. 1983;32:293–301. doi: 10.2337/diab.32.4.293.
    1. Meier J. J., Butler A. E., Saisho Y., et al. β-Cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes. 2008;57:1584–1594. doi: 10.2337/db07-1369.
    1. Georgia S., Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. The Journal of Clinical Investigation. 2004;114:963–968. doi: 10.1172/JCI22098.
    1. Finegood D. T., Scaglia L., Bonner-Weir S. Dynamics of β-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes. 1995;44:249–256. doi: 10.2337/diab.44.3.249.
    1. Teta M., Long S. Y., Wartschow L. M., Rankin M. M., Kushner J. A. Very slow turnover of β-cells in aged adult mice. Diabetes. 2005;54:2557–2567. doi: 10.2337/diabetes.54.9.2557.
    1. Sharma R. B., O’Donnell A. C., Stamateris R. E., et al. Insulin demand regulates β cell number via the unfolded protein response. The Journal of Clinical Investigation. 2015;125:3831–3846. doi: 10.1172/JCI79264.
    1. Alonso L. C., Yokoe T., Zhang P., et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes. 2007;56:1792–1801. doi: 10.2337/db06-1513.
    1. Liang J., Wu S. Y., Zhang D., Wang L., Leung K. K., Leung P. S. NADPH oxidase-dependent reactive oxygen species stimulate beta-cell regeneration through differentiation of endocrine progenitors in murine pancreas. Antioxidants & Redox Signaling. 2016;24:419–433. doi: 10.1089/ars.2014.6135.
    1. Heinis M., Simon M. T., Ilc K., et al. Oxygen tension regulates pancreatic beta-cell differentiation through hypoxia-inducible factor 1alpha. Diabetes. 2010;59:662–669. doi: 10.2337/db09-0891.
    1. Heinis M., Soggia A., Bechetoille C., et al. HIF1alpha and pancreatic beta-cell development. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2012;26:2734–2742. doi: 10.1096/fj.11-199224.
    1. Wang L., Liang J., Leung P. S. The ACE2/Ang-(1-7)/Mas axis regulates the development of pancreatic endocrine cells in mouse embryos. PloS One. 2015;10, aricle e0128216 doi: 10.1371/journal.pone.0146050.
    1. Hoarau E., Chandra V., Rustin P., Scharfmann R., Duvillie B. Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death & Disease. 2014;5, article e1487 doi: 10.1038/cddis.2014.441.
    1. Sun B., Meng X. H., Liu R., Yan S., Xiao Z. D. Mechanism study for hypoxia induced differentiation of insulin-producing cells from umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications. 2015;466:444–449. doi: 10.1016/j.bbrc.2015.09.047.
    1. Kushner J. A., Ciemerych M. A., Sicinska E., et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Molecular and Cellular Biology. 2005;25:3752–3762. doi: 10.1128/MCB.25.9.3752-3762.2005.
    1. Lakshmipathi J., Alvarez-Perez J. C., Rosselot C., et al. PKCζ is essential for pancreatic β-cell replication during insulin resistance by regulating mTOR and cyclin-D2. Diabetes. 2016;65:1283–1296. doi: 10.2337/db15-1398.
    1. Uchida T., Nakamura T., Hashimoto N., et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Medicine. 2005;11:175–182. doi: 10.1038/nm1187.
    1. Kaneto H., Kajimoto Y., Fujitani Y., et al. Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in beta-cell dysfunction. Diabetologia. 1999;42:1093–1097. doi: 10.1007/s001250051276.
    1. Zhang Z., Li J., Yang L., et al. The cytotoxic role of intermittent high glucose on apoptosis and cell viability in pancreatic beta cells. Journal of Diabetes Research. 2014;2014:9. doi: 10.1155/2014/712781.712781
    1. Shi X., Deng H., Dai Z., et al. Nr2e1 deficiency augments palmitate-induced oxidative stress in beta cells. Oxidative Medicine and Cellular Longevity. 2016;2016:9. doi: 10.1155/2016/9648769.9648769
    1. Yokoe T., Alonso L. C., Romano L. C., et al. Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic beta-cell replication in mice. The Journal of Physiology. 2008;586:899–911. doi: 10.1113/jphysiol.2007.143586.
    1. Xu J., Long Y. S., Gozal D., Epstein P. N. Beta-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radical Biology & Medicine. 2009;46:783–790. doi: 10.1016/j.freeradbiomed.2008.11.026.
    1. Glauser D. A., Schlegel W. The emerging role of FOXO transcription factors in pancreatic beta cells. The Journal of Endocrinology. 2007;193:195–207. doi: 10.1677/JOE-06-0191.
    1. Kitamura T., Nakae J., Kitamura Y., et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. The Journal of Clinical Investigation. 2002;110:1839–1847. doi: 10.1172/JCI200216857.
    1. Buteau J., Shlien A., Foisy S., Accili D. Metabolic diapause in pancreatic beta-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. The Journal of Biological Chemistry. 2007;282:287–293.
    1. Toussaint O., Royer V., Salmon M., Remacle J. Stress-induced premature senescence and tissue ageing. Biochemical Pharmacology. 2002;64:1007–1009. doi: 10.1016/S0006-2952(02)01170-X.
    1. Kitamura Y. I., Kitamura T., Kruse J. P., et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metabolism. 2005;2:153–163. doi: 10.1016/j.cmet.2005.08.004.
    1. Nishimura W., Kondo T., Salameh T., et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Developmental Biology. 2006;293:526–539. doi: 10.1016/j.ydbio.2006.02.028.
    1. Guo S., Dai C., Guo M., et al. Inactivation of specific β cell transcription factors in type 2 diabetes. The Journal of Clinical Investigation. 2013;123:3305–3316. doi: 10.1172/JCI65390.
    1. Chiou S. H., Chen S. J., Chang Y. L., et al. MafA promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin(+) cells. Journal of Cellular and Molecular Medicine. 2011;15:612–624. doi: 10.1111/j.1582-4934.2010.01034.x.
    1. Cavener D. R., Gupta S., McGrath B. C. PERK in beta cell biology and insulin biogenesis. Trends in Endocrinology and Metabolism: TEM. 2010;21:714–721. doi: 10.1016/j.tem.2010.08.005.
    1. Back S. H., Scheuner D., Han J., et al. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells. Cell Metabolism. 2009;10:13–26. doi: 10.1016/j.cmet.2009.06.002.
    1. Zhang W., Feng D., Li Y., Iida K., McGrath B., Cavener D. R. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metabolism. 2006;4(6):491–497.
    1. Scheuner D., Vander Mierde D., Song B., et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature Medicine. 2005;11:757–764. doi: 10.1038/nm1259.
    1. Senee V., Vattem K. M., Delepine M., et al. Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53 doi: 10.2337/diabetes.53.7.1876.
    1. Julier C., Nicolino M. Wolcott-Rallison syndrome. Orphanet Journal of Rare Diseases. 2010;5:p. 29. doi: 10.1186/1750-1172-5-29.
    1. Nasri H., Shirzad H., Baradaran A., Rafieian-Kopaei M. Antioxidant plants and diabetes mellitus. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences. 2015;20:491–502.
    1. Steinbrenner H., Sies H. Protection against reactive oxygen species by selenoproteins. Biochimica et Biophysica Acta. 2009;1790:1478–1485. doi: 10.1016/j.bbagen.2009.02.014.
    1. Wang C., Yang S., Zhang N., et al. Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PloS One. 2014;9, article e101315 doi: 10.1371/journal.pone.0116382.
    1. Chang C. C., Yuan W., Roan H. Y., et al. The ethyl acetate fraction of corn silk exhibits dual antioxidant and anti-glycation activities and protects insulin-secreting cells from glucotoxicity. BMC Complementary and Alternative Medicine. 2016;16:p. 432.
    1. Wei L., Shaoyun W., Shutao L., Jianwu Z., Lijing K., Pingfan R. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process. Food & Function. 2013;4:1850–1855. doi: 10.1039/c3fo60169b.
    1. Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9.
    1. Lapidot T., Walker M. D., Kanner J. Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. Journal of Agricultural and Food Chemistry. 2002;50:7220–7225. doi: 10.1021/jf020615a.

Source: PubMed

3
Abonnieren