COVID-19 infection and rheumatoid arthritis: Faraway, so close!

Ennio Giulio Favalli, Francesca Ingegnoli, Orazio De Lucia, Gilberto Cincinelli, Rolando Cimaz, Roberto Caporali, Ennio Giulio Favalli, Francesca Ingegnoli, Orazio De Lucia, Gilberto Cincinelli, Rolando Cimaz, Roberto Caporali

Abstract

The outbreak of the new coronavirus infections COVID-19 in December 2019 in China has quickly become a global health emergency. Given the lack of specific anti-viral therapies, the current management of severe acute respiratory syndrome coronaviruses (SARS-CoV-2) is mainly supportive, even though several compounds are now under investigation for the treatment of this life-threatening disease. COVID-19 pandemic is certainly conditioning the treatment strategy of a complex disorder as rheumatoid arthritis (RA), whose infectious risk is increased compared to the general population because of an overall impairment of immune system typical of autoimmune diseases combined with the iatrogenic effect generated by corticosteroids and immunosuppressive drugs. However, the increasing knowledge about the pathophysiology of SARS-CoV-2 infection is leading to consider some anti-rheumatic drugs as potential treatment options for the management of COVID-19. In this review we will critically analyse the evidences on either positive or negative effect of drugs commonly used to treat RA in this particular scenario, in order to optimize the current approach to RA patients.

Keywords: COVID-19; Coronavirus; Cytokine release syndrome; DMARDs; Rheumatoid arthritis; Treatment.

Copyright © 2020 Elsevier B.V. All rights reserved.

References

    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Tang X., Wu C., Li X., Song Y., Yao X., Wu X. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020 doi: 10.1093/nsr/nwaa036.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323 doi: 10.1001/jama.2020.2648.
    1. Zhang J.-J., Dong X., Cao Y.-Y., Yuan Y.-D., Yang Y.-B., Yan Y.-Q. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy. 2020 doi: 10.1111/all.14238.
    1. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou C.-Q., He J.-X. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Medicine. 2020 doi: 10.1056/nejmoa2002032.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. 2020;395:497–506. doi: 10.1016/s0140-6736(20)30183-5.
    1. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/s2213-2600(20)30079-5.
    1. (Accessed 17th March 2020)
    1. Favalli E.G., Biggioggero M., Meroni P.L. Methotrexate for the treatment of rheumatoid arthritis in the biologic era: still an “anchor” drug? Autoimmun Rev. 2014;13:1102–1108. doi: 10.1016/j.autrev.2014.08.026.
    1. World Health Organization . 2020. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected: Interim Guidance.
    1. Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the eye of the cytokine storm. Microbiol Mol Biology Rev Mmbr. 2012;76:16–32. doi: 10.1128/mmbr.05015-11.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052.
    1. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. Biorxiv. 2020;2020(1):26.919985. doi: 10.1101/2020.01.26.919985.
    1. Zou Z., Yan Y., Shu Y., Gao R., Sun Y., Li X. Angiotensin-converting enzyme 2 protects from lethal avian influenza a H5N1 infections. Nat Commun. 2014;5:3594. doi: 10.1038/ncomms4594.
    1. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020 doi: 10.1016/s2213-2600(20)30116-8.
    1. G DS, Cardiology ES o. Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers n.d.
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Analysis. 2020 doi: 10.1016/j.jpha.2020.03.001.
    1. Yildiz H., Neste E.V.D., Defour J.P., Danse E., Yombi J.C. Adult haemophagocytic lymphohistiocytosis: a review. Qjm Mon J Assoc Physicians. 2020 doi: 10.1093/qjmed/hcaa011.
    1. Ramos-Casals M., Brito-Zerón P., López-Guillermo A., Khamashta M.A., Bosch X. Adult haemophagocytic syndrome. Lancet. 2013;383:1503–1516. doi: 10.1016/s0140-6736(13)61048-x.
    1. Seguin A., Galicier L., Boutboul D., Lemiale V., Azoulay E. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest. 2016;149:1294–1301. doi: 10.1016/j.chest.2015.11.004.
    1. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) Medrxiv. 2020 doi: 10.1101/2020.02.10.20021832.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 doi: 10.1016/S0140-6736(20)30628-0.
    1. Mathew A.J., Ravindran V. Infections and arthritis. Best Pract Res Clin Rheumatol. 2014;28:935–959. doi: 10.1016/j.berh.2015.04.009.
    1. Bogdanos D.P., Smyk D.S., Invernizzi P., Rigopoulou E.I., Blank M., Pouria S. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev. 2012;12:726–740. doi: 10.1016/j.autrev.2012.12.005.
    1. Arleevskaya M.I., Shafigullina A.Z., Filina Y.V., Lemerle J., Renaudineau Y. Associations between viral infection history symptoms, granulocyte reactive oxygen species activity, and active rheumatoid arthritis disease in untreated women at onset: results from a longitudinal cohort study of Tatarstan women. Front Immunol. 2017;8:1725. doi: 10.3389/fimmu.2017.01725.
    1. Joo Y.B., Lim Y.-H., Kim K.-J., Park K.-S., Park Y.-J. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res Ther. 2019;21:199. doi: 10.1186/s13075-019-1977-9.
    1. Listing J., Gerhold K., Zink A. The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment. Rheumatology (Oxford) 2012;52:53–61. doi: 10.1093/rheumatology/kes305.
    1. Galloway J.B., Hyrich K.L., Mercer L.K., Dixon W.G., Fu B., Ustianowski A.P. Anti-TNF therapy is associated with an increased risk of serious infections in patients with rheumatoid arthritis especially in the first 6 months of treatment: updated results from the British Society for Rheumatology biologics register with special emphasis on risks in the elderly. Rheumatology (Oxford) 2010;50:124–131. doi: 10.1093/rheumatology/keq242.
    1. Widdifield J., Bernatsky S., Paterson J.M., Gunraj N., Thorne J.C., Pope J. Serious infections in a population-based cohort of 86,039 seniors with rheumatoid arthritis. Arthritis Care Res. 2013;65:353–361. doi: 10.1002/acr.21812.
    1. Doran M.F., Crowson C.S., Pond G.R., O’Fallon W.M., Gabriel S.E. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 2002;46:2287–2293. doi: 10.1002/art.10524.
    1. Franklin J., Lunt M., Bunn D., Symmons D.P.M., Silman A.J. Risk and predictors of infection leading to hospitalisation in a large primary-care-derived cohort of patients with inflammatory polyarthritis. Ann Rheum Dis. 2007;66:308–312. doi: 10.1136/ard.2006.057265.
    1. Au K., Reed G., Curtis J.R., Kremer J.M., Greenberg J.D., Strand V. High disease activity is associated with an increased risk of infection in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70:785–791. doi: 10.1136/ard.2010.128637.
    1. Accortt N.A., Lesperance T., Liu M., Rebello S., Trivedi M., Li Y. Impact of sustained remission on the risk of serious infection in patients with rheumatoid arthritis. Arthritis Care Res. 2018;70:679–684. doi: 10.1002/acr.23426.
    1. Dougados M., Soubrier M., Antunez A., Balint P., Balsa A., Buch M.H. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA) Ann Rheum Dis. 2013;73:62–68. doi: 10.1136/annrheumdis-2013-204223.
    1. Ranganath V.K., Maranian P., Elashoff D.A., Woodworth T., Khanna D., Hahn T. Comorbidities are associated with poorer outcomes in community patients with rheumatoid arthritis. Rheumatology. 2013;52:1809–1817. doi: 10.1093/rheumatology/ket224.
    1. Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020 doi: 10.1136/annrheumdis-2019-216655.
    1. Strehl C., Ehlers L., Gaber T., Buttgereit F. Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front Immunol. 2019;10:1744. doi: 10.3389/fimmu.2019.01744.
    1. Michaud K., Wolfe F. Comorbidities in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2007;21:885–906. doi: 10.1016/j.berh.2007.06.002.
    1. Boers M., Verhoeven A.C., Markusse H.M., van de Laar M.A., Westhovens R., van Denderen J.C. Randomised comparison of combined step-down prednisolone, methotrexate and sulphasalazine with sulphasalazine alone in early rheumatoid arthritis. Lancet. 1997;350:309–318. doi: 10.1016/s0140-6736(97)01300-7.
    1. van Everdingen A.A., Jacobs J.W.G., van Reesema D.R.S., Bijlsma J.W.J. Low-dose prednisone therapy for patients with early active rheumatoid arthritis: clinical efficacy, disease-modifying properties, and side effects: a randomized, double-blind. Placebo-Controlled Clinical Trial Ann Intern Med. 2002;136:1. doi: 10.7326/0003-4819-136-1-200201010-00006.
    1. Bakker M.F., Jacobs J.W.G., Welsing P.M.J., Verstappen S.M.M., Tekstra J., Ton E. Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis. Ann Intern Med. 2012;156:329. doi: 10.7326/0003-4819-156-5-201203060-00004.
    1. Dixon W.G., Suissa S., Hudson M. The association between systemic glucocorticoid therapy and the risk of infection in patients with rheumatoid arthritis: systematic review and meta-analyses. Arthritis Res Ther. 2011;13:R139. doi: 10.1186/ar3453.
    1. Tang N.L.-S., Chan P.K.-S., Wong C.-K., To K-F, Wu A.K.-L., Sung Y.-M. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem. 2005;51:2333–2340. doi: 10.1373/clinchem.2005.054460.
    1. Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Resp Crit Care. 2018;197:757–767. doi: 10.1164/rccm.201706-1172oc.
    1. Stockman L.J., Bellamy R., Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3 doi: 10.1371/journal.pmed.0030343.
    1. Memish Z.A., Perlman S., Kerkhove M.D.V., Zumla A. Middle East respiratory syndrome. Lancet Lond Engl. 2020 doi: 10.1016/s0140-6736(19)33221-0.
    1. Ni Y.-N., Chen G., Sun J., Liang B.-M., Liang Z.-A. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care. 2019;23:99. doi: 10.1186/s13054-019-2395-8.
    1. Lewis S.R., Pritchard M.W., Thomas C.M., Smith A.F. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;7 doi: 10.1002/14651858.cd004477.pub3.
    1. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet Lond Engl. 2020;395:473–475. doi: 10.1016/s0140-6736(20)30317-2.
    1. Qiao W., Wang C., Chen B., Zhang F., Liu Y., Lu Q. Ibuprofen attenuates cardiac fibrosis in Streptozotocin-induced diabetic rats. Cardiology. 2015;131:97–106. doi: 10.1159/000375362.
    1. Lacaille D., Guh D.P., Abrahamowicz M., Anis A.H., Esdaile J.M. Use of nonbiologic disease-modifying antirheumatic drugs and risk of infection in patients with rheumatoid arthritis. Arthritis Rheum. 2008;59:1074–1081. doi: 10.1002/art.23913.
    1. Smitten A.L., Choi H.K., Hochberg M.C., Suissa S., Simon T.A., Testa M.A. The risk of hospitalized infection in patients with rheumatoid arthritis. J Rheumatol. 2008;35:387–393.
    1. Ibrahim A., Ahmed M., Conway R., Carey J.J. Risk of infection with methotrexate therapy in inflammatory diseases: a systematic review and meta-analysis. J Clin Med. 2018;8:15. doi: 10.3390/jcm8010015.
    1. Tudesq J.-J., Cartron G., Rivière S., Morquin D., Iordache L., Mahr A. Clinical and microbiological characteristics of the infections in patients treated with rituximab for autoimmune and/or malignant hematological disorders. Autoimmun Rev. 2018;17:115–124. doi: 10.1016/j.autrev.2017.11.015.
    1. Ramiro S., Sepriano A., Chatzidionysiou K., Nam J.L., Smolen J.S., van der Heijde D. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis. 2017;76:1101–1136. doi: 10.1136/annrheumdis-2016-210708.
    1. Favalli E.G., Desiati F., Atzeni F., Sarzi-Puttini P., Caporali R., Pallavicini F.B. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun Rev. 2009;8:266–273. doi: 10.1016/j.autrev.2008.11.002.
    1. Atzeni F., Sarzi-Puttini P., Botsios C., Carletto A., Cipriani P., Favalli E.G. Long-term anti-TNF therapy and the risk of serious infections in a cohort of patients with rheumatoid arthritis: comparison of adalimumab, etanercept and infliximab in the GISEA registry. Autoimmun Rev. 2012;12:225–229. doi: 10.1016/j.autrev.2012.06.008.
    1. Rutherford A.I., Subesinghe S., Hyrich K.L., Galloway J.B. Serious infection across biologic-treated patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann Rheum Dis. 2018;77:905–910. doi: 10.1136/annrheumdis-2017-212825.
    1. Singh J.A., Cameron C., Noorbaloochi S., Cullis T., Tucker M., Christensen R. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet. 2015;386:258–265. doi: 10.1016/s0140-6736(14)61704-9.
    1. Singh J.A., Wells G.A., Christensen R., Ghogomu E.T., Maxwell L.J., MacDonald J.K. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Db Syst Rev. 2011 doi: 10.1002/14651858.cd008794.pub2.
    1. Atzeni F., Sarzi-Puttini P., Mutti A., Bugatti S., Cavagna L., Caporali R. Long-term safety of abatacept in patients with rheumatoid arthritis. Autoimmun Rev. 2013;12:1115–1117. doi: 10.1016/j.autrev.2013.06.011.
    1. Bello S.L., Serafino L., Bonali C., Terlizzi N., Fanizza C., Anecchino C. Incidence of influenza-like illness into a cohort of patients affected by chronic inflammatory rheumatism and treated with biological agents. Reumatismo. 2012;64:299–306. doi: 10.4081/reumatismo.2012.299.
    1. Shale M., Czub M., Kaplan G.G., Panaccione R., Ghosh S. Anti-tumor necrosis factor therapy and influenza: keeping it in perspective. Ther Adv Gastroenter. 2010;3:173–177. doi: 10.1177/1756283x10366368.
    1. Sepriano A., Kerschbaumer A., Smolen J.S., van der Heijde D., Dougados M., van Vollenhoven R. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis. 2020 doi: 10.1136/annrheumdis-2019-216653.
    1. Favalli E.G., Matucci-Cerinic M., Szekanecz Z. The Giants (biologicals) against the Pigmies (small molecules), pros and cons of two different approaches to the disease modifying treatment in rheumatoid arthritis. Autoimmun Rev. 2019;19:102421. doi: 10.1016/j.autrev.2019.102421.
    1. Favalli E.G. Tofacitinib’s infectious profile: concerns for clinical practice. Lancet Rheumatol. 2020;2:e65–e67. doi: 10.1016/S2665-9913(20)30001-1.
    1. Winthrop K.L., Yamanaka H., Valdez H., Mortensen E., Chew R., Krishnaswami S. Herpes zoster and Tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2014;66:2675–2684. doi: 10.1002/art.38745.
    1. Smolen J.S., Genovese M.C., Takeuchi T., Hyslop D.L., Macias W.L., Rooney T. Safety profile of Baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J Rheumatol. 2018;46:7–18. doi: 10.3899/jrheum.171361.
    1. Curtis J.R., Xie F., Yun H., Bernatsky S., Winthrop K.L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1843–1847. doi: 10.1136/annrheumdis-2016-209131.
    1. Pawar A., Desai R.J., Gautam N., Kim S.C. Risk of admission to hospital for serious infection after initiating tofacitinib versus biologic DMARDs in patients with rheumatoid arthritis: a multidatabase cohort study. Lancet Rheumatol. 2020;2:e84–e98. doi: 10.1016/s2665-9913(19)30137-7.
    1. Caporali R., Zavaglia D. Real-world experience with tofacitinib for treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2019;37(3):485–495.
    1. Biggioggero M., Becciolini A., Crotti C., Agape E., Favalli E.G. Upadacitinib and filgotinib: the role of JAK1 selective inhibition in the treatment of rheumatoid arthritis. Drugs Context. 2019;8:212595. doi: 10.7573/dic.212595.
    1. Jamilloux Y., Jammal T.E., Vuitton L., Gerfaud-Valentin M., Kerever S., Sève P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18:102390. doi: 10.1016/j.autrev.2019.102390.
    1. Winthrop K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13:234–243. doi: 10.1038/nrrheum.2017.23.
    1. Liu C., Zhou Q., Li Y., Garner L.V., Watkins S.P., Carter L.J. Research and Development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. Acs Central Sci. 2020 doi: 10.1021/acscentsci.0c00272.
    1. Zumla A., Chan J.F.W., Azhar E.I., Hui D.S.C., Yuen K.-Y. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–347. doi: 10.1038/nrd.2015.37.
    1. Lim J., Jeon S., Shin H.Y., Kim M.J., Seong Y.M., Lee W.J. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of Lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020;35 doi: 10.3346/jkms.2020.35.e79.
    1. Mulangu S., Dodd L.E., Davey R.T., Mbaya O.T., Proschan M., Mukadi D. A randomized, controlled trial of Ebola virus disease therapeutics. New Engl J Medicine. 2019;381:2293–2303. doi: 10.1056/nejmoa1910993.
    1. Sheahan T.P., Sims A.C., Graham R.L., Menachery V.D., Gralinski L.E., Case J.B. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9 doi: 10.1126/scitranslmed.aal3653.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0.
    1. Widjaja I., Wang C., van Haperen R., Gutiérrez-Álvarez J., van Dieren B., Okba N.M.A. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microbes Infec. 2019;8:516–530. doi: 10.1080/22221751.2019.1597644.
    1. Wang C., Li W., Drabek D., Okba N.M.A., van Haperen R., Osterhaus A.D.M.E. A human monoclonal 1 antibody blocking SARS-CoV-2 infection. Biorxiv. 2020 doi: 10.1101/2020.03.11.987958.
    1. Schrezenmeier E., Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16:155–166. doi: 10.1038/s41584-020-0372-x.
    1. Inglot A.D. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol. 1969;4:203–214. doi: 10.1099/0022-1317-4-2-203.
    1. Keyaerts E., Vijgen L., Maes P., Neyts J., Ranst M.V. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Bioph Res Co. 2004;323:264–268. doi: 10.1016/j.bbrc.2004.08.085.
    1. Paton N.I., Lee L., Xu Y., Ooi E.E., Cheung Y.B., Archuleta S. Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis. 2011;11:677–683. doi: 10.1016/s1473-3099(11)70065-2.
    1. Roques P., Thiberville S.-D., Dupuis-Maguiraga L., Lum F.-M., Labadie K., Martinon F. Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses. 2018;10:268. doi: 10.3390/v10050268.
    1. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422x-2-69.
    1. Devaux C.A., Rolain J.-M., Colson P., Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Ag. 2020;105938 doi: 10.1016/j.ijantimicag.2020.105938.
    1. Savarino A., Trani L.D., Donatelli I., Cauda R., Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6:67–69. doi: 10.1016/s1473-3099(06)70361-9.
    1. Chinese Clinical Trial Registry. 2020.
    1. Gao J., Tian Z., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020 doi: 10.5582/bst.2020.01047.
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa237.
    1. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) Medrxiv. 2020 doi: 10.1101/2020.02.18.20024364.
    1. Shakoory B., Carcillo J.A., Chatham W.W., Amdur R.L., Zhao H., Dinarello C.A. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome. Crit Care Med. 2016;44:275–281. doi: 10.1097/ccm.0000000000001402.
    1. Xu X., Han M., Li T., Sun W., Wang D., Fu B. ChinaXiv:20200300026. 2020. Effective treatment os severe COVID-19 patients with tocilizumab.
    1. (Accessed 17th March 2020)
    1. Wang W., He J., Puyi Lie, Liyan Huang, Wu S., Yongping Lin. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis. Medrxiv. 2020 doi: 10.1101/2020.02.26.20026989.
    1. Haga S., Yamamoto N., Nakai-Murakami C., Osawa Y., Tokunaga K., Sata T. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A. 2008;105:7809–7814. doi: 10.1073/pnas.0711241105.
    1. Wang W., Ye L., Ye L., Li B., Gao B., Zeng Y. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res. 2007;128:1–8. doi: 10.1016/j.virusres.2007.02.007.
    1. Sorrell F.J., Szklarz M., Azeez K.R.A., Elkins J.M., Knapp S. Family-wide structural analysis of human numb-associated protein kinases. Struct Lond Engl 1993. 2016;24:401–411. doi: 10.1016/j.str.2015.12.015.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet Lond Engl. 2020;395:565–574. doi: 10.1016/s0140-6736(20)30251-8.
    1. Bekerman E., Neveu G., Shulla A., Brannan J., Pu S.-Y., Wang S. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J Clin Invest. 2017;127:1338–1352. doi: 10.1172/jci89857.
    1. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 doi: 10.1016/s1473-3099(20)30132-8.
    1. Pu S.-Y., Xiao F., Schor S., Bekerman E., Zanini F., Barouch-Bentov R. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res. 2018;155:67–75. doi: 10.1016/j.antiviral.2018.05.001.
    1. Richardson P., Griffin I., Tucker C., Smith D., Oechsle O., Phelan A. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet Lond Engl. 2020;395:e30–e31. doi: 10.1016/s0140-6736(20)30304-4.
    1. Ferguson F.M., Gray N.S. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018;17:353–377. doi: 10.1038/nrd.2018.21.
    1. Sanchez G.A.M., Reinhardt A., Ramsey S., Wittkowski H., Hashkes P.J., Berkun Y. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128:3041–3052. doi: 10.1172/jci98814.
    1. Virtanen A.T., Haikarainen T., Raivola J., Silvennoinen O. Selective JAKinibs: prospects in inflammatory and autoimmune diseases. Biodrugs Clin Immunother Biopharm Gene Ther. 2019;33:15–32. doi: 10.1007/s40259-019-00333-w.
    1. Borden E.C., Sen G.C., Uze G., Silverman R.H., Ransohoff R.M., Foster G.R. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–990. doi: 10.1038/nrd2422.
    1. Schoggins J.W., Wilson S.J., Panis M., Murphy M.Y., Jones C.T., Bieniasz P. Corrigendum: a diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2015;525:144. doi: 10.1038/nature14554.
    1. Fleming S. Viral inhibition of the IFN-induced JAK/STAT Signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Nato Adv Sci Inst Se. 2016;4:23. doi: 10.3390/vaccines4030023.
    1. Ayllon J., García-Sastre A. Current topics in microbiology and immunology. Curr Top Microbiol. 2014;386:73–107. doi: 10.1007/82_2014_400.
    1. Jia D., Rahbar R., Chan R.W.Y., Lee S.M.Y., Chan M.C.W., Wang B.X. Influenza virus non-structural protein 1 (NS1) disrupts interferon signaling. PLoS One. 2010;5 doi: 10.1371/journal.pone.0013927.
    1. Conigliaro P., Triggianese P., Martino E.D., Fonti G.L., Chimenti M.S., Sunzini F. Challenges in the treatment of rheumatoid arthritis. Autoimmun Rev. 2019;18:706–713. doi: 10.1016/j.autrev.2019.05.007.
    1. Favalli E.G., Raimondo M.G., Becciolini A., Crotti C., Biggioggero M., Caporali R. The management of first-line biologic therapy failures in rheumatoid arthritis: current practice and future perspectives. Autoimmun Rev. 2017;16:1185–1195. doi: 10.1016/j.autrev.2017.10.002.
    1. Edwards C.J., Galeazzi M., Bellinvia S., Ringer A., Dimitroulas T., Kitas G. Can we wean patients with inflammatory arthritis from biological therapies? Autoimmun Rev. 2019;18:102399. doi: 10.1016/j.autrev.2019.102399.

Source: PubMed

3
Abonnieren