Systemic Immune-Inflammation Index Is Superior to Neutrophil to Lymphocyte Ratio in Prognostic Assessment of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy

Cong Jiang, Yubo Lu, Shiyuan Zhang, Yuanxi Huang, Cong Jiang, Yubo Lu, Shiyuan Zhang, Yuanxi Huang

Abstract

Results: SII, NLR, and PLR did not define patient groups with distinct clinicopathological characteristics. SII, NLR, and PLR cut-off values were 547, 2.13, and 88.23, as determined by ROC analysis; the corresponding areas under the curve (AUCs) were 0.625, 0.555, and 0.571, respectively. Cox regression models identified SII as independently associated with OS. Patients with low SII had prolonged OS (65 vs. 41 months, P = 0.017, HR: 3.24, 95% CI: 1.23-8.55). In the Z test, the difference in AUC between SII and NLR was statistically significant (Z = 2.721, 95% CI: 0.0194-0.119, P = 0.0065).

Conclusion: Our study suggests that the pretreatment SII value is significantly correlated with OS in breast cancer patients undergoing NAC and that the prognostic utility of SII is superior to that of NLR and PLR.

Conflict of interest statement

All the authors report no conflicts of interest in this work.

Copyright © 2020 Cong Jiang et al.

Figures

Figure 1
Figure 1
Kaplan-Meier analysis of OS in patients of high and low SII with breast cancer.
Figure 2
Figure 2
Kaplan-Meier analysis of OS in patients of high and low NLR with breast cancer.
Figure 3
Figure 3
Kaplan-Meier analysis of OS in patients of high and low PLR with breast cancer.
Figure 4
Figure 4
Comparison of prognostic ability of SII, NLR, and PLR.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians. 2018;68(6):394–424. doi: 10.3322/caac.21492.
    1. Ziegler R. G., Hoover R. N., Pike M. C., et al. Migration patterns and breast cancer risk in Asian-American women. Journal of the National Cancer Institute. 1993;85(22):1819–1827. doi: 10.1093/jnci/85.22.1819.
    1. Brinton L. A., Gaudet M. M., Gierach G. L. Breast cancer. In: Thun M. J., Linet M. S., Cerhan J. R., Haiman C. A., Schottenfeld D., editors. Cancer Epidemiology and Prevention. 4th. New York, NY, USA: Oxford University Press; 2018. pp. 861–888.
    1. Patel D. A., Xi J., Luo J., et al. Neutrophil-to-lymphocyte ratio as a predictor of survival in patients with triple-negative breast cancer. Breast Cancer Research and Treatment. 2019;174(2):443–452. doi: 10.1007/s10549-018-05106-7.
    1. Wang M., Hou L., Chen M., et al. Neoadjuvant chemotherapy creates surgery opportunities for inoperable locally advanced breast cancer. Scientific Reports. 2017;7(1, article 44673) doi: 10.1038/srep44673.
    1. Sinacki M., Badzio A., Wełnicka-Jaśkiewicz M., et al. Pattern of care in locally advanced breast cancer: focus on local therapy. Breast. 2011;20(2):145–150. doi: 10.1016/j.breast.2010.08.008.
    1. Xie H., Liu J., Yu S., et al. Patterns of use of docetaxel-containing adjuvant chemotherapy among Chinese patients with operable breast cancer: a multicenter observational study. Advances in Therapy. 2019;36(1):131–146. doi: 10.1007/s12325-018-0841-7.
    1. Franceschini G., Di AL N. M., Sanchez M. A., Masett R. Conservative surgery after neoadjuvant chemotherapy in patients with operable breast cancer. Annali Italiani di Chirurgia. 2018;89:p. 290.
    1. Andre F., Dieci M. V., Dubsky P., et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clinical Cancer Research. 2013;19(1):28–33. doi: 10.1158/1078-0432.CCR-11-2701.
    1. Bianchini G., Gianni L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncology. 2014;15(2):e58–e68. doi: 10.1016/S1470-2045(13)70477-7.
    1. Elyasinia F., Keramati M. R., Ahmadi F., et al. Neutrophil-lymphocyte ratio in different stages of breast cancer. Acta Medica Iranica. 2017;55(4):228–232.
    1. Ma J. Y., Hu G., Liu Q. Prognostic significance of the lymphocyte-to-monocyte ratio in bladder cancer undergoing radical cystectomy: a meta-analysis of 5638 individuals. Disease Markers. 2019;2019:8. doi: 10.1155/2019/7593560.7593560
    1. Chen L., Hao Y., Cong X., et al. Peripheral venous blood platelet-to-lymphocyte ratio (PLR) for predicting the survival of patients with gastric cancer treated with SOX or XELOX regimen neoadjuvant chemotherapy. Technology in Cancer Research & Treatment. 2019;18:p. 153303381982948. doi: 10.1177/1533033819829485.
    1. Li S., Xu H., Wang W., et al. The systemic inflammation response index predicts survival and recurrence in patients with resectable pancreatic ductal adenocarcinoma. Cancer Management and Research. 2019;Volume 11:3327–3337. doi: 10.2147/CMAR.S197911.
    1. Mandaliya H., Jones M., Oldmeadow C., Nordman I. I. C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI) Translational Lung Cancer Research. 2019;8(6):886–894. doi: 10.21037/tlcr.2019.11.16.
    1. Aziz M. H., Sideras K., Aziz N. A., et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels. Annals of Surgery. 2019;270(1):139–146. doi: 10.1097/SLA.0000000000002660.
    1. Wang B., Huang Y., Lin T. Prognostic impact of elevated pre-treatment systemic immune-inflammation index (SII) in hepatocellular carcinoma. Medicine (Baltimore) 2020;99(1, article e18571) doi: 10.1097/MD.0000000000018571.
    1. Wang Q., Zhu D. The prognostic value of systemic immune-inflammation index (SII) in patients after radical operation for carcinoma of stomach in gastric cancer. Journal of Gastrointestinal Oncology. 2019;10(5):965–978. doi: 10.21037/jgo.2019.05.03.
    1. Abdel-Rahman O. Validation of the 8th AJCC prognostic staging system for breast cancer in a population-based setting. Breast Cancer Research and Treatment. 2018;168(1):269–275. doi: 10.1007/s10549-017-4577-x.
    1. Sandberg L. J., Clemens M. W., Symmans W. F., et al. Molecular profiling using breast cancer subtype to plan for breast reconstruction. Plast Reconstr Surg. 2017;139(3):586e–596e. doi: 10.1097/PRS.0000000000003050.
    1. Shinko D., Diakos C. I., Clarke S. J., Charles K. A. Cancer-related systemic inflammation: the challenges and therapeutic opportunities for personalized medicine. Clinical Pharmacology and Therapeutics. 2017;102(4):599–610. doi: 10.1002/cpt.789.
    1. Romero-Cordoba S., Meneghini E., Sant M., et al. Decoding immune heterogeneity of triple negative breast cancer and its association with systemic inflammation. Cancers. 2019;11(7):p. 911. doi: 10.3390/cancers11070911.
    1. Stovgaard E. S., Nielsen D., Hogdall E., Balslev E. Triple negative breast cancer - prognostic role of immune-related factors: a systematic review. Acta Oncologica. 2018;57(1):74–82. doi: 10.1080/0284186X.2017.1400180.
    1. Zhao L.-Y., Yang D.-D., Ma X.-K., et al. The prognostic value of aspartate aminotransferase to lymphocyte ratio and systemic immune-inflammation index for overall survival of hepatocellular carcinoma patients treated with palliative treatments. Journal of Cancer. 2019;10(10):2299–2311. doi: 10.7150/jca.30663.
    1. Sanghera C., Teh J. J., Pinato D. J. The systemic inflammatory response as a source of biomarkers and therapeutic targets in hepatocellular carcinoma. Liver International. 2019;39(11):2008–2023. doi: 10.1111/liv.14220.
    1. Houghton A. M. G., Rzymkiewicz D. M., Ji H., et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine. 2010;16(2):219–223. doi: 10.1038/nm.2084.
    1. Walz W., Cayabyab F. S. Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction. Neurochemical Research. 2017;42(9):2560–2565. doi: 10.1007/s11064-017-2265-1.
    1. Tan K. W., Chong S. Z., Wong F. H. S., et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood. 2013;122(22):3666–3677. doi: 10.1182/blood-2012-11-466532.
    1. Franco A. T., Corken A., Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126(5):582–588. doi: 10.1182/blood-2014-08-531582.
    1. Jiang L., Luan Y., Miao X., et al. Platelet releasate promotes breast cancer growth and angiogenesis via VEGF- integrin cooperative signalling. British Journal of Cancer. 2017;117(5):695–703. doi: 10.1038/bjc.2017.214.
    1. Menter D. G., Kopetz S., Hawk E., et al. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Reviews. 2017;36(2):199–213. doi: 10.1007/s10555-017-9682-0.
    1. Mohme M., Riethdorf S., Pantel K. Circulating and disseminated tumour cells -- mechanisms of immune surveillance and escape. Nature Reviews Clinical Oncology. 2017;14(3):155–167. doi: 10.1038/nrclinonc.2016.144.
    1. Ali H. R., Provenzano E., Dawson S. J., et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Annals of Oncology. 2014;25(8):1536–1543. doi: 10.1093/annonc/mdu191.
    1. Velaei K., Samadi N., Barazvan B., Rad J. S. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100. doi: 10.1016/j.breast.2016.09.002.
    1. Liu J., Shi Z., Bai Y., Liu L., Cheng K. Prognostic significance of systemic immune-inflammation index in triple-negative breast cancer. Cancer Management and Research. 2019;Volume 11:4471–4480. doi: 10.2147/CMAR.S197623.
    1. Jiang L., Fang J., Ding J. High systemic immune-inflammation index predicts poor survival in patients with human epidermal growth factor receptor-2 positive breast cancer receiving adjuvant trastuzumab. Cancer Management and Research. 2020;Volume 12:475–484. doi: 10.2147/CMAR.S231444.
    1. Sun Y., Li W., Li A. J., Su H., Yue J., Yu J. <p>Increased systemic immune-inflammation index independently predicts poor survival for hormone receptor-negative, HER2-positive breast cancer patients</p>. Cancer Management and Research. 2019;Volume 11:3153–3162. doi: 10.2147/CMAR.S190335.
    1. Chen L., Kong X., Wang Z., Wang X., Fang Y., Wang J. Pre-treatment systemic immune-inflammation index is a useful prognostic indicator in patients with breast cancer undergoing neoadjuvant chemotherapy. Journal of Cellular and Molecular Medicine. 2020;24(5):2993–3021. doi: 10.1111/jcmm.14934.
    1. Xue L. B., Liu Y. H., Zhang B., et al. Prognostic role of high neutrophil-to-lymphocyte ratio in breast cancer patients receiving neoadjuvant chemotherapy: meta-analysis. Medicine. 2019;98(1, article e13842) doi: 10.1097/MD.0000000000013842.
    1. Guo W., Lu X., Liu Q., et al. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: an updated meta-analysis of 17079 individuals. Cancer Medicine. 2019;8(9):4135–4148. doi: 10.1002/cam4.2281.
    1. Bun A., Fujimoto Y., Higuchi T., et al. Prognostic significance of neutrophil-to-lymphocyte ratio in luminal breast cancers with low levels of tumour-infiltrating lymphocytes. Anticancer Research. 2020;40(5):2871–2880. doi: 10.21873/anticanres.14263.
    1. Eryilmaz M. K., Mutlu H., Salim D. K., Musri F. Y., Tural D., Coskun H. S. The neutrophil to lymphocyte ratio has a high negative predictive value for pathologic complete response in locally advanced breast cancer patients receiving neoadjuvant chemotherapy. Asian Pacific Journal of Cancer Prevention. 2014;15(18):7737–7740. doi: 10.7314/apjcp.2014.15.18.7737.

Source: PubMed

3
Abonnieren