Rates of lobar atrophy in asymptomatic MAPT mutation carriers

Qin Chen, Bradley F Boeve, Matthew Senjem, Nirubol Tosakulwong, Timothy G Lesnick, Danielle Brushaber, Christina Dheel, Julie Fields, Leah Forsberg, Ralitza Gavrilova, Debra Gearhart, Jonathan Graff-Radford, Neill R Graff-Radford, Clifford R Jack Jr, David T Jones, David S Knopman, Walter K Kremers, Maria Lapid, Rosa Rademakers, Jeremy Syrjanen, Adam L Boxer, Howie Rosen, Zbigniew K Wszolek, Kejal Kantarci, LEFFTDS Consortium, Qin Chen, Bradley F Boeve, Matthew Senjem, Nirubol Tosakulwong, Timothy G Lesnick, Danielle Brushaber, Christina Dheel, Julie Fields, Leah Forsberg, Ralitza Gavrilova, Debra Gearhart, Jonathan Graff-Radford, Neill R Graff-Radford, Clifford R Jack Jr, David T Jones, David S Knopman, Walter K Kremers, Maria Lapid, Rosa Rademakers, Jeremy Syrjanen, Adam L Boxer, Howie Rosen, Zbigniew K Wszolek, Kejal Kantarci, LEFFTDS Consortium

Abstract

Introduction: The aim of this study was to investigate the rates of lobar atrophy in the asymptomatic microtubule-associated protein tau (MAPT) mutation carriers.

Methods: MAPT mutation carriers (n = 14; 10 asymptomatic, 4 converters from asymptomatic to symptomatic) and noncarriers (n = 13) underwent structural magnetic resonance imaging and were followed annually with a median of 9.2 years. Longitudinal changes in lobar atrophy were analyzed using the tensor-based morphometry with symmetric normalization algorithm.

Results: The rate of temporal lobe atrophy in asymptomatic MAPT mutation carriers was faster than that in noncarriers. Although the greatest rate of atrophy was observed in the temporal lobe in converters, they also had increased atrophy rates in the frontal and parietal lobes compared to noncarriers.

Discussion: Accelerated decline in temporal lobe volume occurs in asymptomatic MAPT mutation carriers followed by the frontal and parietal lobe in those who have become symptomatic. The findings have implications for monitoring the progression of neurodegeneration during clinical trials in asymptomatic MAPT mutation carriers.

Keywords: Asymptomatic; Frontotemporal dementia; Longitudinal; MAPT; Magnetic resonance image.

Figures

Fig. 1
Fig. 1
Lobar volume plotted against age at MRI. Data point trajectories for individual MAPT mutation carriers (top panel) and the predicted volumes (cm3) from the mixed models for each group (bottom panel) are shown. The blue line represents for the asymptomatic group who remained asymptomatic during the course of the study; the red line represents for the asymptomatic MAPT mutation carriers who converted; the black line represents the noncarriers. The noncarriers are not plotted in the top panel to show the data from the MAPT mutation carriers with clarity. Abbreviations: MAPT, microtubule-associated protein tau; MRI, magnetic resonance imaging.
Fig. 2
Fig. 2
Voxel-based analysis showed greater annualized rates of cortical atrophy in all MAPT mutation carriers compared to noncarriers. The results are shown at P < .05 after using the false discovery rate correction for multiple comparisons. Abbreviation: MAPT, microtubule-associated protein tau.

References

    1. Bang J., Spina S., Miller B.L. Frontotemporal dementia. Lancet. 2015;386:1672–1682.
    1. Rohrer J.D., Warren J.D. Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol. 2011;24:542–549.
    1. Ingram E.M., Spillantini M.G. Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med. 2002;8:555–562.
    1. Bunker J.M., Kamath K., Wilson L., Jordan M.A., Feinstein S.C. FTDP-17 mutations compromise the ability of tau to regulate microtubule dynamics in cells. J Biol Chem. 2006;281:11856–11863.
    1. Cash D.M., Bocchetta M., Thomas D.L., Dick K.M., van Swieten J.C., Borroni B. Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging. 2018;62:191–196.
    1. Kantarci K., Boeve B.F., Wszolek Z.K., Rademakers R., Whitwell J.L., Baker M.C. MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology. 2010;75:771–778.
    1. Dopper E.G., Rombouts S.A., Jiskoot L.C., den Heijer T., de Graaf J.R., de Koning I. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2014;83:e19–e26.
    1. Vemuri P., Weigand S.D., Knopman D.S., Kantarci K., Boeve B.F., Petersen R.C. Time-to-event voxel-based techniques to assess regional atrophy associated with MCI risk of progression to AD. Neuroimage. 2011;54:985–991.
    1. Whitwell J.L., Petersen R.C., Negash S., Weigand S.D., Kantarci K., Ivnik R.J. Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol. 2007;64:1130–1138.
    1. Risacher S.L., Anderson W.H., Charil A., Castelluccio P.F., Shcherbinin S., Saykin A.J. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology. 2017;89:2176–2186.
    1. Cash D.M., Ridgway G.R., Liang Y., Ryan N.S., Kinnunen K.M., Yeatman T. The pattern of atrophy in familial Alzheimer disease: volumetric MRI results from the DIAN study. Neurology. 2013;81:1425–1433.
    1. Murray M.E., Ferman T.J., Boeve B.F., Przybelski S.A., Lesnick T.G., Liesinger A.M. MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies. Neurology. 2013;81:1681–1689.
    1. Rohrer J.D., Ridgway G.R., Modat M., Ourselin S., Mead S., Fox N.C. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage. 2010;53:1070–1076.
    1. Fumagalli G.G., Basilico P., Arighi A., Bocchetta M., Dick K.M., Cash D.M. Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimers Res Ther. 2018;10:46.
    1. Whitwell J.L., Jack C.R., Jr., Boeve B.F., Senjem M.L., Baker M., Rademakers R. Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN. Neurology. 2009;72:813–820.
    1. Whitwell J.L., Jack C.R., Jr., Boeve B.F., Senjem M.L., Baker M., Ivnik R.J. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology. 2009;73:1058–1065.
    1. Rohrer J.D., Nicholas J.M., Cash D.M., van Swieten J., Dopper E., Jiskoot L. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 2015;14:253–262.
    1. Spina S., Farlow M.R., Unverzagt F.W., Kareken D.A., Murrell J.R., Fraser G. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain. 2008;131:72–89.
    1. Cordes M., Wszolek Z., Calne D., Rodnitzky R.L., Pfeiffer R.F. Magnetic resonance imaging studies in rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Neurodegeneration. 1992;1:217–224.
    1. Whitwell J.L., Josephs K.A., Avula R., Tosakulwong N., Weigand S.D., Senjem M.L. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77:866–874.
    1. Panman J.L., Jiskoot L.C., Bouts M., Meeter L.H.H., van der Ende E.L., Poos J.M. Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study. Neurobiol Aging. 2019;76:115–124.
    1. Jiskoot L.C., Panman J.L., Meeter L.H., Dopper E.G.P., Donker Kaat L., Franzen S. Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain. 2019;142:193–208.
    1. Wszolek Z.K., Pfeiffer R.F., Bhatt M.H., Schelper R.L., Cordes M., Snow B.J. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol. 1992;32:312–320.
    1. Cash D.M., Frost C., Iheme L.O., Unay D., Kandemir M., Fripp J. Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. Neuroimage. 2015;123:149–164.
    1. Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851.
    1. Avants B.B., Epstein C.L., Grossman M., Gee J.C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.
    1. Vemuri P., Whitwell J.L., Kantarci K., Josephs K.A., Parisi J.E., Shiung M.S. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage. 2008;42:559–567.
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289.
    1. Hutton M., Lendon C.L., Rizzu P., Baker M., Froelich S., Houlden H. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–705.
    1. Wszolek Z.K., Kardon R.H., Wolters E.C., Pfeiffer R.F. Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17): PPND family. A longitudinal videotape demonstration. Mov Disord. 2001;16:756–760.
    1. Wszolek Z.K., Tsuboi Y., Uitti R.J., Reed L. Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology. 2000;55:1939.
    1. Arima K., Kowalska A., Hasegawa M., Mukoyama M., Watanabe R., Kawai M. Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology. 2000;54:1787–1795.
    1. Arvanitakis Z., Witte R.J., Dickson D.W., Tsuboi Y., Uitti R.J., Slowinski J. Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation) Parkinsonism Relat Disord. 2007;13:230–239.
    1. Cheshire W.P., Tsuboi Y., Wszolek Z.K. Physiologic assessment of autonomic dysfunction in pallidopontonigral degeneration with N279K mutation in the tau gene on chromosome 17. Auton Neurosci. 2002;102:71–77.
    1. Ferman T.J., McRae C.A., Arvanitakis Z., Tsuboi Y., Vo A., Wszolek Z.K. Early and pre-symptomatic neuropsychological dysfunction in the PPND family with the N279K tau mutation. Parkinsonism Relat Disord. 2003;9:265–270.
    1. Slowinski J., Dominik J., Uitti R.J., Ahmed Z., Dickson D.D., Wszolek Z.K. Frontotemporal dementia and Parkinsonism linked to chromosome 17 with the N279K tau mutation. Neuropathology. 2007;27:73–80.
    1. Whitwell J.L., Boeve B.F., Weigand S.D., Senjem M.L., Gunter J.L., Baker M.C. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol. 2015;22:745–752.
    1. Mahoney C.J., Simpson I.J., Nicholas J.M., Fletcher P.D., Downey L.E., Golden H.L. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol. 2015;77:33–46.
    1. Elahi F.M., Marx G., Cobigo Y., Staffaroni A.M., Kornak J., Tosun D. Longitudinal white matter change in frontotemporal dementia subtypes and sporadic late onset Alzheimer's disease. Neuroimage Clin. 2017;16:595–603.
    1. McCarthy A., Lonergan R., Olszewska D.A., O'Dowd S., Cummins G., Magennis B. Closing the tau loop: the missing tau mutation. Brain. 2015;138:3100–3109.

Source: PubMed

3
Abonnieren