Effect of Low Intensity Pulsed Ultrasound (LIPUS) on Tooth Movement and Root Resorption: A Prospective Multi-Center Randomized Controlled Trial

Tarek El-Bialy, Khaled Farouk, Terry D Carlyle, William Wiltshire, Robert Drummond, Tim Dumore, Kevin Knowlton, Bryan Tompson, Tarek El-Bialy, Khaled Farouk, Terry D Carlyle, William Wiltshire, Robert Drummond, Tim Dumore, Kevin Knowlton, Bryan Tompson

Abstract

The aim of this study was to evaluate the possible effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption in orthodontic patients. Twenty-one patients were included in a split-mouth study design (group 1). Ten additional patients were included with no LIPUS device being used and this group was used as the negative control group (group 2). Group 1 patients were given LIPUS devices that were randomly assigned to right or left side on upper or lower arches. LIPUS was applied to the assigned side that was obtained by randomization, using transducers that produce ultrasound with a pulse frequency of 1.5 MHz, a pulse repetition rate of 1 kHz, and average output intensity of 30 mW/cm2. Cone-beam computed tomography (CBCT) images were taken before and after treatment. The extraction space dimensions were measured every four weeks and root lengths of canines were measured before and after treatment. The data were analyzed using paired t-test. The study outcome showed that the mean rate of tooth movement in LIPUS side was 0.266 ± 0.092 mm/week and on the control side was 0.232 ± 0.085 mm/week and the difference was statistically significant. LIPUS increased the rate of tooth movement by an average of 29%. For orthodontic root resorption, the LIPUS side (0.0092 ± 0.022 mm/week) showed a statistically significant decrease as compared to control side (0.0223 ± 0.022 mm/week). The LIPUS application accelerated tooth movement and minimized orthodontically induced tooth root resorption at the same time.

Keywords: LIPUS; acceleration; clinical trial; low-intensity pulsed ultrasound; orthodontic tooth movement.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
The CONSORT flow diagram.
Figure 2
Figure 2
Low-intensity pulsed ultrasound (LIPUS) device used in the clinical trial including A: handheld electronics; B: mouthpiece containing LIPUS transducers; and, C: oral ultrasound gel.
Figure 3
Figure 3
A case in the LIPUS group at the beginning (top left) and two months of the treatment (top right) the patient’s lower right side was treated by LIPUS and lower left side was control. CBCT scan showing root angulation after canine retraction (bottom left LIPUS treated side and right is control).
Figure 4
Figure 4
Comparison of the weekly rate of tooth movement in the active group.
Figure 5
Figure 5
Comparison of the weekly rate of root resorption in the active group.

References

    1. Jung M.H. Evaluation of the effects of malocclusion and orthodontic treatment on self-esteem in an adolescent population. Am. J. Orthod. Dentofacial. Orthop. 2010;138:160–166. doi: 10.1016/j.ajodo.2008.08.040.
    1. Rusanen J., Lahti S., Tolvanen M., Pirttiniemi P. Quality of life in patients with severe malocclusion before treatment. Eur. J. Orthod. 2010;32:43–48. doi: 10.1093/ejo/cjp065.
    1. Pabari S., Moles D.R., Cunningham S.J. Assessment of motivation and psychological characteristics of adult orthodontic patients. Am. J. Orthod. Dentofacial. Orthop. 2011;140:263–272. doi: 10.1016/j.ajodo.2011.06.022.
    1. Sergl H.G., Zentner A. Study of psychosocial aspects of adult orthodontic treatment. Int. J. Adult Orthodon. Orthognath. Surg. 1997;12:17–22.
    1. Bichara L.M., de Aragón M.L.C., Brandão G.A.M., Normando D. Factors influencing orthodontic treatment time for non-surgical Class III malocclusion. J. Appl. Oral. Sci. 2016;24:431–436. doi: 10.1590/1678-775720150353.
    1. Skidmore K.J., Brook K.J., Thomson W.M., Harding W.J. Factors influencing treatment time in orthodontic patients. Am. J. Orthod. Dentofacial. Orthop. 2006;129:230–238. doi: 10.1016/j.ajodo.2005.10.003.
    1. Long H., Pyakurel U., Wang Y., Liao L., Zhou Y., Lai W. Interventions for accelerating orthodontic tooth movement: A systematic review. Angle Orthod. 2013;83:164–171. doi: 10.2319/031512-224.1.
    1. Roykó A., Dénes Z., Razouk G. The relationship between the length of orthodontic treatment and patient compliance. Fogorv. Sz. 1999;92:79–86.
    1. Bishara S.E., Ostby A.W. White spot lesions: Formation, prevention, and treatment. Semin. Orthod. 2008;14:174–182. doi: 10.1053/j.sodo.2008.03.002.
    1. Pandis N., Nasika M., Polychronopoulou A., Eliades T. External apical root resorption in patients treated with conventional and self-ligating brackets. Am. J. Orthod. Dentofacial. Orthop. 2008;134:646–651. doi: 10.1016/j.ajodo.2007.01.032.
    1. Yamaguchi M., Hayashi M., Fujita S., Yoshida T., Utsunomiya T., Yamamoto H., Kasai K. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur. J. Orthod. 2010;32:131–139. doi: 10.1093/ejo/cjp078.
    1. Showkatbakhsh R., Jamilian A., Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J. Orthod. 2010;11:52–56.
    1. Kim D.H., Park Y.G., Kang S.G. The effects of electrical current from a micro-electrical device on tooth movement. Korean J. Orthod. 2008;38:337. doi: 10.4041/kjod.2008.38.5.337.
    1. Hassan A.H., Al-Fraidi A.A., Al-Saeed S.H. Corticotomy-assisted orthodontic treatment: Review. Open Dent. J. 2010;13:159–164. doi: 10.2174/1874210601004010159.
    1. Işeri H., Kişnişci R., Bzizi N., Tüz H. Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am. J. Orthod. Dentofacial. Orthop. 2005;127:533–541. doi: 10.1016/j.ajodo.2004.01.022.
    1. Nishimura M., Chiba M., Ohashi T., Sato M., Shimizu Y., Igarashi K., Mitani H. Periodontal tissue activation by vibration: Intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am. J. Orthod. Dentofacial. Orthop. 2008;133:572–583. doi: 10.1016/j.ajodo.2006.01.046.
    1. Ojima K., Dan C., Kumagai Y., Schupp W. Invisalign treatment accelerated by photobiomodulation. J. Clin. Orthod. 2016;50:309–317.
    1. Isola G., Matarese G., Cordasco G., Perillo L., Ramaglia L. Mechanobiology of the tooth movement during the orthodontic treatment: A literature review. Minerva Stomatol. 2016;65:299–327.
    1. Huang H., Williams R.C., Kyrkanides S. Accelerated orthodontic tooth movement: Molecular mechanisms. Am. J. Orthod. Dentofacial. Orthop. 2014;146:620–632. doi: 10.1016/j.ajodo.2014.07.007.
    1. Tsesis I., Fuss Z., Rosenberg E., Taicher S. Radiographic evaluation of the prevalence of root resorption in a Middle Eastern population. Quintessence Int. 2008;39:40–44.
    1. Machen D.E. Legal aspects of orthodontic practice: Risk management concepts. Diagnosis, root resorption, and progress monitoring. Am. J. Orthod. Dentofacial. Orthop. 1989;95:267–268. doi: 10.1016/0889-5406(89)90062-0.
    1. Franklin E. Why orthodontists get sued. Semin. Orthod. 2002;8:210–215. doi: 10.1053/sodo.2002.127867.
    1. Lupi J.E., Handelman C.S., Sadowsky C. Prevalence and severity of apical root resorption and alveolar bone loss in orthodontically treated adults. Am. J. Orthod. Dentofacial. Orthop. 1996;109:28–37. doi: 10.1016/S0889-5406(96)70160-9.
    1. Harris E.F., Boggan B.W., Wheeler D.A. Apical root resorption in patients treated with comprehensive orthodontics. J. Tenn. Dent. Assoc. 2001;81:30–33.
    1. El-Bialy T., Lam B., Al-Daghreer S., Sloan A.J. The effect of low intensity pulsed ultrasound in a 3D ex vivo orthodontic model. J. Dent. 2011;39:693–699. doi: 10.1016/j.jdent.2011.08.001.
    1. Al-Daghreer S., Doschak M., Sloan A.J., Major P.W., Heo G., Scurtescu C., Tsui Y.Y. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound Med. Biol. 2014;40:1187–1196. doi: 10.1016/j.ultrasmedbio.2013.12.016.
    1. Tanaka E., Kuroda S., Horiuchi S., Tabata A., El-Bialy T. Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann. Biomed. Eng. 2015;43:871–886. doi: 10.1007/s10439-015-1274-y.
    1. Salem K.H., Schmelz A. Low-intensity pulsed ultrasound shortens the treatment time in tibial distraction osteogenesis. Int. Orthop. 2014;38:1477–1482. doi: 10.1007/s00264-013-2254-1.
    1. Heckman J.D., Ryaby J.P., McCabe J., Frey J.J., Kilcoyne R.F. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. Am. 1994;76:26–34. doi: 10.2106/00004623-199401000-00004.
    1. Maurya R.K., Singh H., Kapoor P., Jain U., Mitra R. Effects of low-level laser and low-intensity pulsed ultrasound therapy on treatment duration and pain perception. J. Clin. Orthod. 2019;53:154–162.
    1. El-Bialy T.H., Royston T.J., Magin R.L., Evans C.A., Zaki A.E., Frizzell L.A. The effect of pulsed ultrasound on mandibular distraction. Ann. Biomed. Eng. 2002;30:1251–1261. doi: 10.1114/1.1529196.
    1. Nightingale C., Jones S.P. A clinical investigation of force delivery systems for orthodontic space closure. J. Orthod. 2003;30:229–236. doi: 10.1093/ortho/30.3.229.
    1. Hayashi K., Uechi J., Lee S.P., Mizoguchi I. Three-dimensional analysis of orthodontic tooth movement based on XYZ and finite helical axis systems. Eur. J. Orthod. 2007;29:589–595. doi: 10.1093/ejo/cjm061.
    1. Burstone C.J. Rationale of the segmented arch. Am. J. Orthod. 1962;48:805–822. doi: 10.1016/0002-9416(62)90001-5.
    1. Lagravère M.O., Carey J., Heo G., Toogood R.W., Major P.W. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs. traditional rapid maxillary expansion: A randomized clinical trial. Am. J. Orthod. Dentofacial. Orthop. 2010;137:1–12.
    1. Shia G.J. Treatment overruns. J. Clin. Orthod. 1986;20:602–604.
    1. Keim R.G., Gottlieb E.L., Nelson A.H., Vogels D.S. 2003 JCO orthodontic practice study. Part 4: Additional breakdowns. J. Clin. Orthod. 2004;38:17–27.
    1. Lee W. Corticotomy for orthodontic tooth movement. J. Korean Assoc. Oral Maxillofac. Surg. 2018;44:251–258. doi: 10.5125/jkaoms.2018.44.6.251.
    1. Zainal A.S.H., Yamamoto Z., Zainol A.L.Z., Megat A.W.R., Zainal A.Z. Cellular and molecular changes in orthodontic tooth movement. Sci. World J. 2011;11:1788–1803. doi: 10.1100/2011/761768.
    1. Roberts W.E., Huja S., Roberts J.A. Bone modeling: Biomechanics, molecular mechanisms, and clinical perspectives. Semin. Orthod. 2004;10:123–161. doi: 10.1053/j.sodo.2004.01.003.
    1. Brudvik P., Rygh P. The initial phase of orthodontic root resorption incident to local compression of the periodontal ligament. Eur. J. Orthod. 1993;15:249–263. doi: 10.1093/ejo/15.4.249.
    1. Tsuchiya M., Akiba Y., Takahashi I., Sasano Y., Kashiwazaki J., Tsuchiya S., Watanabe M. Comparison of expression patterns of cathepsin K and MMP-9 in odontoclasts and osteoclasts in physiological root resorption in the rat molar. Arch. Histol. Cytol. 2008;71:89–100. doi: 10.1679/aohc.71.89.
    1. El-Bialy T., El-Shamy I., Graber T.M. Repair of orthodontically induced root resorption by ultrasound in humans. Am. J. Orthod. Dentofacial. Orthop. 2004;126:186–193. doi: 10.1016/j.ajodo.2004.02.010.
    1. Watabe H., Furuhama T., Tani-Ishii N., Mikuni-Takagaki Y. Mechanotransduction activates α₅β₁ integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp. Cell Res. 2011;317:2642–2649. doi: 10.1016/j.yexcr.2011.07.015.
    1. Xia P., Wang X., Qu Y., Lin Q., Cheng K., Gao M., Ren S., Zhang T., Li X. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res. Ther. 2017;8:281. doi: 10.1186/s13287-017-0733-9.
    1. Padilla F., Puts R., Vico L., Raum K. Stimulation of bone repair with ultrasound: A review of the possible mechanic effects. Ultrasonics. 2014;54:1125–1145. doi: 10.1016/j.ultras.2014.01.004.
    1. Li J.K., Chang W.H., Lin J.C., Ruaan R.C., Liu H.C., Sun J.S. Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials. 2003;24:2379–2385. doi: 10.1016/S0142-9612(03)00033-4.
    1. Fávaro-Pípi E., Bossini P., de Oliveira P., Ribeiro J.U., Tim C., Parizotto N.A., Alves J.M., Ribeiro D.A., Selistre de Araujo H., Renno A.C.M. Low-intensity pulsed ultrasound produced an increase of osteogenic genes expression during the process of bone healing in rats. Ultrasound Med. Biol. 2010;36:2057–2064. doi: 10.1016/j.ultrasmedbio.2010.07.012.
    1. Yang Z., Ren L., Deng F., Wang Z., Song J. Low-intensity pulsed ultrasound induces osteogenic differentiation of human periodontal ligament cells through activation of bone morphogenetic protein-smad signaling. J. Ultrasound Med. 2014;33:865–873. doi: 10.7863/ultra.33.5.865.
    1. Chiu C.Y., Tsai T.L., Vanderby R., Bradica G., Lou S.L., Li W.J. Osteoblastogenesis of mesenchymal stem cells in 3-D culture enhanced by low-intensity pulsed ultrasound through soluble receptor activator of nuclear factor kappa B ligand. Ultrasound Med. Biol. 2015;41:1842–1852. doi: 10.1016/j.ultrasmedbio.2015.03.017.
    1. Rego E.B., Inubushi T., Miyauchi M., Kawazoe A., Tanaka E., Takata T., Tanne K. Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro. J. Periodont. Res. 2011;46:648–654. doi: 10.1111/j.1600-0765.2011.01384.x.
    1. Akagi H., Nakanishi Y., Nakanishi K., Matsubara H., Hirose Y., Wang P.L., Ochi M. Influence of low-intensity pulsed ultrasound stimulation on expression of bone-related genes in rat bone marrow cells. J. Hard Tissue Biol. 2016;25:1–5. doi: 10.2485/jhtb.25.1.
    1. Inubushi T., Tanaka E., Rego E.B., Ohtani J., Kawazoe A., Tanne K., Miyauchi M., Takata T. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application. Bone. 2013;53:497–506. doi: 10.1016/j.bone.2013.01.021.
    1. Unsworth J., Kaneez S., Harris S., Ridgway J., Fenwick S., Chenery D., Harrison A. Pulsed low intensity ultrasound enhances mineralisation in preosteoblast cells. Ultrasound Med. Biol. 2007;33:1468–1474. doi: 10.1016/j.ultrasmedbio.2006.12.003.
    1. Raza H., Major P., Dederich D., El-Bialy T. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: A prospective, double-blind, controlled clinical trial. Angle Orthod. 2016;86:550–557. doi: 10.2319/081915-554.1.
    1. Dalla-Bona D.A., Tanaka E., Inubushi T., Oka H., Ohta A., Okada H., Miyauchi M., Takata T., Tanne K. Cementoblast response to low- and high-intensity ultrasound. Arch. Oral Biol. 2008;53:318–323. doi: 10.1016/j.archoralbio.2007.11.006.
    1. Rego E.B., Inubushi T., Kawazoe A., Tanimoto K., Miyauchi M., Tanaka E., Takata T., Tanne K. Ultrasound stimulation induces PGE2 synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. Ultrasound Med. Biol. 2010;36:907–915. doi: 10.1016/j.ultrasmedbio.2010.03.008.
    1. Baldwin D.C. Appearance and aesthetics in oral health. Commun. Dent. Oral Epidemiol. 1980;8:244–256. doi: 10.1111/j.1600-0528.1980.tb01296.x.
    1. Grzić R., Spalj S., Lajnert V., Glavicić S., Uhac I., Pavicić D.K. Factors influencing a patient’s decision to choose the type of treatment to improve dental esthetics. Vojnosanit Pregl. 2012;69:978–985. doi: 10.2298/VSP111027026G.
    1. Ashari A., Mohamed A.M. Relationship of the dental aesthetic index to the oral health-related quality of life. Angle Orthod. 2016;86:337–342. doi: 10.2319/121014-896.1.

Source: PubMed

3
Abonnieren