Hypofractionated Radiotherapy Upregulates Several Immune Checkpoint Molecules in Head and Neck Squamous Cell Carcinoma Cells Independently of the HPV Status While ICOS-L Is Upregulated Only on HPV-Positive Cells

Sebastian Wimmer, Lisa Deloch, Michael Hader, Anja Derer, Fridolin Grottker, Thomas Weissmann, Markus Hecht, Antoniu-Oreste Gostian, Rainer Fietkau, Benjamin Frey, Udo S Gaipl, Sebastian Wimmer, Lisa Deloch, Michael Hader, Anja Derer, Fridolin Grottker, Thomas Weissmann, Markus Hecht, Antoniu-Oreste Gostian, Rainer Fietkau, Benjamin Frey, Udo S Gaipl

Abstract

While the treatment of squamous cell carcinoma of the head and neck (HNSCC) with radiotherapy (RT) is complemented more and more by immunotherapy in clinical trials, little is known about the impact of the human papillomavirus (HPV) status or the applied RT scheme on the immune phenotype of the tumor cells. Therefore, we aimed to examine the impact of the HPV status of four human HNSCC cell lines on cell death and the expression of immune checkpoint molecules (ICMs) after RT with either hypofractionation irradiation (5x3.0Gy) or a high single dose (1x19.3Gy) via multicolor flow cytometry and quantitative PCR at an early time point after therapy. In our study, 5x3.0Gy RT induced high numbers of early and late apoptotic cells independent of the HPV status, but necrosis was only increased in the HPV-positive UM-Scc-47 cells. Generally, the immune stimulatory ICMs (CD70, CD137-L, ICOS-L) were less affected by RT compared to the immune suppressive ones (PD-L1, PD-L2, and the herpesvirus entry mediator (HVEM)). A significant higher surface expression of the analyzed ICMs was found after hypofractionated RT compared to a single high dose; however, regardless of the HPV status, with the exception of ICOS-L. Here, HPV-positive HNSCC tumor cells showed a stronger response to 5x3.0Gy than HPV-negative ones. On the RNA level, only minor alterations of ICMs were observed following RT, with the exception of the HPV negative cell line CAL33 treated with 5x3.0Gy, where PD-L2, HVEM and CD70 were significantly increased. We conclude that the HPV status may not distinctly predict immunological responses following RT, and thus cannot be used as a single predictive marker for therapy responses in HNSCC. In contrast, the patient-specific individual expression of ICMs following RT is preferable for the targeted patient selection for immune therapy directed against distinct ICM.

Keywords: HNSCC; HPV status; immune checkpoint molecules; immunotherapy; radiotherapy.

Conflict of interest statement

M.H. (Michael Hader), U.S.G. and R.F. received support for presentation activities from -Ing. Sennewald Medizintechnik GmbH. R.F., U.S.G. and B.F. have received support for investigator initiated clinical studies (IITs) from Merck Sharp & Dohme and AstraZeneca. R.F. and U.S.G. also contributed at Advisory Boards Meetings of AstraZeneca and Bristol-Myers Squibb. M.H. (Markus Hecht): Merck Serono (advisory role, speakers’ bureau, honoraria, travel expenses, research funding); MSD (advisory role, speakers’ bureau, honoraria, travel expenses, research funding); AstraZeneca (research funding); Novartis (research funding); BMS (advisory role, honoraria, speakers’ bureau); Teva (travel expenses). S.W., L.D., A.D., F.G., A.-O.G. and T.W. have no conflict of interest.

Figures

Figure A1
Figure A1
Gating strategy for cell death measurement with AnnexinV/Propidium iodide staining. Left: Forward-side-scatter to separate single cells from cell clusters. Middle: Separation of cells from cell debris. Right: Separation of the different cell death forms with AnnexinV-FITC and Propidium iodide. Primary necrotic cells: Ax+/Pi++, early apoptotic cells: Ax+/Pi−, late apoptotic cells: Ax+/Pi+. Shown is the gating strategy using an exemplary staining for HSC-4 cells that were evaluated on day 7 of the experiment.
Figure A2
Figure A2
Exemplary gating strategy for analyses of cell surface expression of immune checkpoint molecules via multicolor flow cytometry. Pre-gating: identification of single cells (“singlets”), differentiation of cells from debris (“cells”) and vital cells via Zombie live/dead stain (“vital”). X-Med of various antibodies for immune checkpoint molecules was taken and X-Med values of Zombie only stained samples was subtracted for ΔMFI calculation.
Figure 1
Figure 1
Cell death forms on day 7 for the two HPV-negative cell lines (HSC-4 and CAL33; grey dots) and the two HPV-positive cell lines (UD-Scc-2 and UM-Scc-47; white dots). The graphs show the percentage of early and late apoptotic (a) and necrotic cells (b) in the total cell count for all three treatment conditions, untreated (w/o), 5x3.0Gy and 1x19.3Gy nhpv− = 5; nhpv+ = 6 biological independent experiments. Graphs show median + min to max, and a two-sided Mann–Whitney U test was performed for comparisons of treatments within one cell line: * p < 0.05, ** p < 0.01.
Figure 2
Figure 2
Cell surface expression of immune suppressive checkpoint molecules PD-L1 (a), PD-L2 (b), and HVEM (c) on the cell surface of HPV-negative (grey dots) and HPV-positive (white dots) HNSCC cell lines with nhpv− = 5; nhpv+ = 6 biological independent experiments. Cells were subjected to either a hypofractionated irradiation regimen (5x3.0Gy) or a single high dose of 19.3Gy. ΔMFI was calculated by subtracting the respective stained samples from Zombie-only-treated samples. Graphs show median + min to max, and a two-sided Mann–Whitney U test was performed for comparisons of treatments within one cell line: * p < 0.05, ** p < 0.01.
Figure 3
Figure 3
Cell surface expression of immune stimulatory checkpoint molecules CD70 (a), CD137-L (b) and ICOS-L (c) on the cell surface of HPV-negative (grey dots) and HPV-positive (white dots) HNSCC cell lines with nhpv− = 5; nhpv+ = 6 biological independent experiments. Cells were subjected to either a hypofractionated irradiation regimen (5x3.0Gy) or a single high dose of 19.3Gy. ΔMFI was calculated by subtracting the respective stained samples from Zombie-only-stained samples. Graphs show Median + min to max and a two-sided Mann–Whitney U test was performed for comparisons of treatments within one cell line: * p < 0.05.
Figure 4
Figure 4
Normalized gene expression of immune suppressive (PD-L1 (a), PD-L2 (b), HVEM (c) and immune stimulatory (CD70 (d), CD137-L (e), ICOS-L (f)) checkpoint molecules of HPV-negative (grey dots) and HPV-positive (white dots) HNSCC cell lines. Cells were subjected to either a hypofractionated irradiation regimen (5x3.0Gy) or a single high dose of 19.3Gy. Normalized gene expression was calculated by normalizing samples to the following housekeeping genes: HPV−: ACTB, RPL27, RPL30, RPS18; HPV+: ACTB, RPL27, RPL30, RPS18, UBC. Graphs show Median + min to max for nHSC-4 = 4, nCal33 = 5, nUD-Scc-2 = 5, nUM-Scc-47 = 3 biological independent experiments and a two-sided Mann–Whitney U test was performed for comparisons of treatments within one cell line: * p < 0.05.
Figure 5
Figure 5
Irradiation schedule of the HNSCC cell lines with 5x3.0Gy (hypofractionated) and 1x19.3Gy (high single dose). Seeding of the cells was carried out on day 1, irradiation with 5x3.0Gy on day 2–6 and 1x19.9Gy on day 6, respectively. On day 7, analysis of the cells via flow cytometry or collection of cell pellets in TriFast was performed. In the above scheme, each vertical line represents one day of the experiment.

References

    1. Ali J., Sabiha B., Jan H.U., Haider S.A., Khan A.A., Ali S.S. Genetic etiology of oral cancer. Oral Oncol. 2017;70:23–28. doi: 10.1016/j.oraloncology.2017.05.004.
    1. Robert Koch-Institut . Krebs in Deutschland 2015/2016. Robert-Koch-Institut; Berlin, Germany: 2019. Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V.
    1. Hecht M., Hahn D., Wolber P., Hautmann M.G., Reichert D., Weniger S., Belka C., Bergmann T., Göhler T., Welslau M., et al. Treatment response lowers tumor symptom burden in recurrent and/or metastatic head and neck cancer. BMC Cancer. 2020;20:933. doi: 10.1186/s12885-020-07440-w.
    1. Sawabe M., Ito H., Oze I., Hosono S., Kawakita D., Tanaka H., Hasegawa Y., Murakami S., Matsuo K. Heterogeneous impact of alcohol consumption according to treatment method on survival in head and neck cancer: A prospective study. Cancer Sci. 2017;108:91–100. doi: 10.1111/cas.13115.
    1. Sheedy T., Heaton C. HPV-associated oropharyngeal cancer. J. Am. Acad. PAs. 2019;32:26–31. doi: 10.1097/01.JAA.0000578756.52642.cb.
    1. Jakob M., Sharaf K., Schirmer M., Leu M., Küffer S., Bertlich M., Ihler F., Haubner F., Canis M., Kitz J. Role of cancer stem cell markers ALDH1, BCL11B, BMI-1, and CD44 in the prognosis of advanced HNSCC. Strahlenther. Onkol. 2021;197:231–245. doi: 10.1007/s00066-020-01653-5.
    1. Wagner S., Böckmann H., Gattenlöhner S., Klussmann J.P., Wittekindt C. Das angeborene immunsystem beim oropharynxkarzinom. HNO. 2018;66:301–307. doi: 10.1007/s00106-018-0480-y.
    1. Fietkau R., Hecht M., Hofner B., Lubgan D., Iro H., Gefeller O., Rödel C., Hautmann M.G., Kölbl O., Salay A., et al. Randomized phase-III-trial of concurrent chemoradiation for locally advanced head and neck cancer comparing dose reduced radiotherapy with paclitaxel/cisplatin to standard radiotherapy with fluorouracil/cisplatin: The PacCis-trial. Radiother. Oncol. 2020;144:209–217. doi: 10.1016/j.radonc.2020.01.016.
    1. Zhou C., Parsons J.L. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev. Mol. Med. 2020;22:e3. doi: 10.1017/erm.2020.4.
    1. Göttgens E.L., Ostheimer C., Span P.N., Bussink J., Hammond E.M. HPV, hypoxia and radiation response in head and neck cancer. Br. J. Radiol. 2019;92:20180047. doi: 10.1259/bjr.20180047.
    1. Qian J.M., Schoenfeld J.D. Radiotherapy and immunotherapy for head and neck cancer: Current evidence and challenges. Front. Oncol. 2020;10:608772. doi: 10.3389/fonc.2020.608772.
    1. Hecht M., Gostian A.O., Eckstein M., Rutzner S., von der Grün J., Illmer T., Hautmann M.G., Klautke G., Laban S., Brunner T., et al. Safety and efficacy of single cycle induction treatment with cisplatin/docetaxel/durvalumab/tremelimumab in locally advanced HNSCC: First results of CheckRad-CD8. J. Immunother. Cancer. 2020;8:e001378. doi: 10.1136/jitc-2020-001378.
    1. Semrau S., Gostian A.O., Traxdorf M., Eckstein M., Rutzner S., von der Grün J., Illmer T., Hautmann M., Klautke G., Laban S., et al. Implementation of double immune checkpoint blockade increases response rate to induction chemotherapy in head and neck cancer. Cancers. 2021;13:1959. doi: 10.3390/cancers13081959.
    1. Shu C.A., Cascone T. What is neo? Chemoimmunotherapy in the neoadjuvant setting for resectable non-small-cell lung cancer. J. Clin. Oncol. 2021:Jco2101446. doi: 10.1200/JCO.21.01446.
    1. Li B., Chan H.L., Chen P. Immune Checkpoint Inhibitors: Basics and Challenges. Curr. Med. Chem. 2019;26:3009–3025. doi: 10.2174/0929867324666170804143706.
    1. Frey B., Rückert M., Deloch L., Rühle P.F., Derer A., Fietkau R., Gaipl U.S. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol. Rev. 2017;280:231–248. doi: 10.1111/imr.12572.
    1. Jhunjhunwala S., Hammer C., Delamarre L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer. 2021;21:298–312. doi: 10.1038/s41568-021-00339-z.
    1. Chen S., Crabill G.A., Pritchard T.S., McMiller T.L., Wei P., Pardoll D.M., Pan F., Topalian S.L. Mechanisms regulating PD-L1 expression on tumor and immune cells. J. Immunother. Cancer. 2019;7:305. doi: 10.1186/s40425-019-0770-2.
    1. Rückert M., Flohr A.S., Hecht M., Gaipl U.S. Radiotherapy and the immune system: More than just immune suppression. Stem Cells. 2021 doi: 10.1002/stem.3391.
    1. Voll R.E., Herrmann M., Roth E.A., Stach C., Kalden J.R., Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390:350–351. doi: 10.1038/37022.
    1. Deng L., Liang H., Burnette B., Beckett M., Darga T., Weichselbaum R.R., Fu Y.X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014;124:687–695. doi: 10.1172/JCI67313.
    1. Cohen E.E.W., Bell R.B., Bifulco C.B., Burtness B., Gillison M.L., Harrington K.J., Le Q.T., Lee N.Y., Leidner R., Lewis R.L., et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC) J. Immunother. Cancer. 2019;7:184. doi: 10.1186/s40425-019-0662-5.
    1. Gavrielatou N., Doumas S., Economopoulou P., Foukas P.G., Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat. Rev. 2020;84:101977. doi: 10.1016/j.ctrv.2020.101977.
    1. Zhou J.G., Donaubauer A.J., Frey B., Becker I., Rutzner S., Eckstein M., Sun R., Ma H., Schubert P., Schweizer C., et al. Prospective development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with recurrent/metastatic cancer to immune checkpoint inhibitors. J. Immunother. Cancer. 2021;9:e001845. doi: 10.1136/jitc-2020-001845.
    1. Tsang J.Y.S., Chan K.-W., Ni Y.-B., Hlaing T., Hu J., Chan S.-K., Cheung S.-Y., Tse G.M. Expression and clinical significance of Herpes Virus Entry Mediator (HVEM) in Breast Cancer. Ann. Surg. Oncol. 2017;24:4042–4050. doi: 10.1245/s10434-017-5924-1.
    1. Song D., Lyu H., Feng Q., Luo J., Li L., Wang X. Subtyping of head and neck squamous cell cancers based on immune signatures. Int. Immunopharmacol. 2021;99:108007. doi: 10.1016/j.intimp.2021.108007.
    1. Solinas C., Gu-Trantien C., Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open. 2020;5:e000544. doi: 10.1136/esmoopen-2019-000544.
    1. Lucido C.T., Vermeer P.D., Wieking B.G., Vermeer D.W., Lee J.H. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines. 2014;2:841–853. doi: 10.3390/vaccines2040841.
    1. Park Y.P., Jin L., Bennett K.B., Wang D., Fredenburg K.M., Tseng J.E., Chang L.J., Huang J., Chan E.K.L. CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma. Oral Oncol. 2018;78:145–150. doi: 10.1016/j.oraloncology.2018.01.024.
    1. de Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012;13:607–615. doi: 10.1016/S1470-2045(12)70137-7.
    1. Tinhofer I., Jöhrens K., Keilholz U., Kaufmann A., Lehmann A., Weichert W., Stenzinger A., Stromberger C., Klinghammer K., Becker E.T., et al. Contribution of human papilloma virus to the incidence of squamous cell carcinoma of the head and neck in a European population with high smoking prevalence. Eur. J. Cancer. 2015;51:514–521. doi: 10.1016/j.ejca.2014.12.018.
    1. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.
    1. Reuschenbach M., Wagner S., Würdemann N., Sharma S.J., Prigge E.S., Sauer M., Wittig A., Wittekindt C., von Knebel Doeberitz M., Klussmann J.P. Humane papillomviren bei plattenepithelkarzinomen der kopf-und halsregion. HNO. 2016;64:450–459. doi: 10.1007/s00106-016-0123-0.
    1. Spanos W.C., Nowicki P., Lee D.W., Hoover A., Hostager B., Gupta A., Anderson M.E., Lee J.H. Immune response during therapy with cisplatin or radiation for human papillomavirus-related head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 2009;135:1137–1146. doi: 10.1001/archoto.2009.159.
    1. Wuerdemann N., Gültekin S.E., Pütz K., Wittekindt C., Huebbers C.U., Sharma S.J., Eckel H., Schubotz A.B., Gattenlöhner S., Büttner R., et al. PD-L1 expression and a high tumor infiltrate of CD8+ lymphocytes predict outcome in patients with oropharyngeal squamous cells carcinoma. Int. J. Mol. Sci. 2020;21:5228. doi: 10.3390/ijms21155228.
    1. Nguyen L.N., Ang K.K. Radiotherapy for cancer of the head and neck: Altered fractionation regimens. Lancet Oncol. 2002;3:693–701. doi: 10.1016/S1470-2045(02)00906-3.
    1. Bernier J., Bentzen S.M. Altered fractionation and combined radio-chemotherapy approaches: Pioneering new opportunities in head and neck oncology. Eur. J. Cancer. 2003;39:560–571. doi: 10.1016/S0959-8049(02)00838-9.
    1. Gupta T., Ghosh-Laskar S., Agarwal J.P. Resource-sparing curative-intent hypofractionated-accelerated radiotherapy in head and neck cancer: More relevant than ever before in the COVID era. Oral Oncol. 2020;111:105045. doi: 10.1016/j.oraloncology.2020.105045.
    1. Vreugdenhil M., Fong C., Sanghera P., Hartley A., Dunn J., Mehanna H. Hypofractionated chemoradiation for head and cancer: Data from the PET NECK trial. Oral Oncol. 2021;113:105112. doi: 10.1016/j.oraloncology.2020.105112.
    1. Demaria S., Guha C., Schoenfeld J., Morris Z., Monjazeb A., Sikora A., Crittenden M., Shiao S., Khleif S., Gupta S., et al. Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J. Immunother. Cancer. 2021;9:e002038. doi: 10.1136/jitc-2020-002038.
    1. Dovedi S.J., Adlard A.L., Lipowska-Bhalla G., McKenna C., Jones S., Cheadle E.J., Stratford I.J., Poon E., Morrow M., Stewart R., et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74:5458–5468. doi: 10.1158/0008-5472.CAN-14-1258.
    1. Rühle A., Nicolay N.H. Aggressive Deeskalation der Strahlentherapie bei HPV-assoziierten Oropharynxkarzinomen auf der Basis der Hypoxiedynamik. Strahlenther. und Onkol. 2021;197:505–519. doi: 10.1007/s00066-021-01765-6.
    1. Dok R., Bamps M., Glorieux M., Zhao P., Sablina A., Nuyts S. Radiosensitization approaches for HPV-positive and HPV-negative head and neck squamous carcinomas. Int. J. Cancer. 2020;146:1075–1085. doi: 10.1002/ijc.32558.
    1. Arenz A., Ziemann F., Mayer C., Wittig A., Dreffke K., Preising S., Wagner S., Klussmann J.-P., Engenhart-Cabillic R., Wittekindt C. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlenther. und Onkol. 2014;190:839–846. doi: 10.1007/s00066-014-0605-5.
    1. Kimple R.J., Smith M.A., Blitzer G.C., Torres A.D., Martin J.A., Yang R.Z., Peet C.R., Lorenz L.D., Nickel K.P., Klingelhutz A.J., et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res. 2013;73:4791–4800. doi: 10.1158/0008-5472.CAN-13-0587.
    1. Rieckmann T., Tribius S., Grob T.J., Meyer F., Busch C.J., Petersen C., Dikomey E., Kriegs M. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother. Oncol. 2013;107:242–246. doi: 10.1016/j.radonc.2013.03.013.
    1. Jonathan E.C., Bernhard E.J., McKenna W.G. How does radiation kill cells? Curr. Opin. Chem. Biol. 1999;3:77–83. doi: 10.1016/S1367-5931(99)80014-3.
    1. Kobayashi K., Hisamatsu K., Suzui N., Hara A., Tomita H., Miyazaki T. A review of HPV-related head and neck cancer. J. Clin. Med. 2018;7:241. doi: 10.3390/jcm7090241.
    1. Galvis M.M., Borges G.A., Oliveira T.B., Toledo I.P., Castilho R.M., Guerra E.N.S., Kowalski L.P., Squarize C.H. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2020;150:102966. doi: 10.1016/j.critrevonc.2020.102966.
    1. Fialová A., Koucký V., Hajdušková M., Hladíková K., Špíšek R. immunological network in head and neck squamous cell carcinoma-a prognostic tool beyond HPV status. Front. Oncol. 2020;10:1701. doi: 10.3389/fonc.2020.01701.
    1. Wansom D., Light E., Worden F., Prince M., Urba S., Chepeha D.B., Cordell K., Eisbruch A., Taylor J., D’Silva N., et al. Correlation of cellular immunity with human papillomavirus 16 status and outcome in patients with advanced oropharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 2010;136:1267–1273. doi: 10.1001/archoto.2010.211.
    1. Hader M., Frey B., Fietkau R., Hecht M., Gaipl U.S. Immune biological rationales for the design of combined radio- and immunotherapies. Cancer Immunol. Immunother. 2020;69:293–306. doi: 10.1007/s00262-019-02460-3.
    1. Rückert M., Deloch L., Frey B., Schlücker E., Fietkau R., Gaipl U.S. Combinations of radiotherapy with vaccination and immune checkpoint inhibition differently affect primary and abscopal tumor growth and the tumor microenvironment. Cancers. 2021;13:714. doi: 10.3390/cancers13040714.
    1. Leemans C.R., Snijders P.J.F., Brakenhoff R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer. 2018;18:269–282. doi: 10.1038/nrc.2018.11.
    1. Shewale J.B., Gillison M.L. Dynamic factors affecting HPV-attributable fraction for head and neck cancers. Curr. Opin. Virol. 2019;39:33–40. doi: 10.1016/j.coviro.2019.07.008.
    1. Malissen N., Macagno N., Granjeaud S., Granier C., Moutardier V., Gaudy-Marqueste C., Habel N., Mandavit M., Guillot B., Pasero C., et al. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncoimmunology. 2019;8:e1665976. doi: 10.1080/2162402X.2019.1665976.
    1. Outh-Gauer S., Morini A., Tartour E., Lépine C., Jung A.C., Badoual C. The microenvironment of head and neck cancers: Papillomavirus involvement and potential impact of immunomodulatory treatments. Head Neck Pathol. 2020;14:330–340. doi: 10.1007/s12105-020-01147-x.
    1. Reid P., Staudacher A.H., Marcu L.G., Olver I., Moghaddasi L., Brown M.P., Bezak E. Influence of the human papillomavirus on the radio-responsiveness of cancer stem cells in head and neck cancers. Sci. Rep. 2020;10:2716. doi: 10.1038/s41598-020-59654-4.
    1. Derer A., Spiljar M., Bäumler M., Hecht M., Fietkau R., Frey B., Gaipl U.S. Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front. Immunol. 2016;7:610. doi: 10.3389/fimmu.2016.00610.
    1. Kim K.J., Kim J.H., Lee S.J., Lee E.J., Shin E.C., Seong J. Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget. 2017;8:41242–41255. doi: 10.18632/oncotarget.17168.
    1. Frey B., Rückert M., Weber J., Mayr X., Derer A., Lotter M., Bert C., Rödel F., Fietkau R., Gaipl U.S. Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front. Immunol. 2017;8:231. doi: 10.3389/fimmu.2017.00231.
    1. Buchwald Z.S., Wynne J., Nasti T.H., Zhu S., Mourad W.F., Yan W., Gupta S., Khleif S.N., Khan M.K. Radiation, immune checkpoint blockade and the abscopal effect: A critical review on timing, dose and fractionation. Front. Oncol. 2018;8:612. doi: 10.3389/fonc.2018.00612.
    1. Rückert M., Deloch L., Fietkau R., Frey B., Hecht M., Gaipl U.S. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther. Onkol. 2018;194:509–519. doi: 10.1007/s00066-018-1287-1.

Source: PubMed

3
Abonnieren