Comparison of vascular parameters between normal cynomolgus macaques and healthy humans by optical coherence tomography angiography

Jingyi Peng, Liuxueying Zhong, Li Ma, Jiayi Jin, Yongxin Zheng, Chenjin Jin, Jingyi Peng, Liuxueying Zhong, Li Ma, Jiayi Jin, Yongxin Zheng, Chenjin Jin

Abstract

Background: The metabolic activity of retina is higher than other human tissues and is crucial to the vision. Cynomolgus macaques is widely used in ophthalmic disease research. The evaluation and comparison of macular and optic disc vascular circulation parameters between normal adult cynomolgus macaques and healthy adult humans using OCT-A can promote better use of nonhuman primate models in studies of ophthalmic vascular disease.

Methods: Twelve normal adult cynomolgus macaques with a mean age of 4.91 ± 0.43 years were studied for data collection. The macula of 28 adult healthy humans (14 males and 14 females), with a mean age of 25.11 ± 6.21 years and the optic discs of 9 adult healthy humans (4 males and 5 females) with a mean age of 28.56 ± 6.78 years were measured. The vessel density (VD) was measured using an RTVue XR with AngioVue. The scan sizes of the macular and optic discs were 3 × 3 mm and 4.5 × 4.5 mm, respectively.

Results: OCT-A can image the superficial and deep capillary plexuses and radial peripapillary capillary network. In RPC layer of the optic disc, the VD in the nasal quadrant was lower than the VD in the inferior temporal quadrant. Similarities and significant differences in VD between healthy humans and cynomolgus macaques were obtained using OCT-A.

Conclusions: This study provides normal vascular parameters for adult cynomolgus macaques using OCT-A to help establish an optical parameter database for cynomolgus macaques and compare VD between healthy humans and cynomolgus macaques to promote choroid-retinopathy research.

Trial registration: Current Controlled Trials NCT03692169 , retrospectively registered on 26 sept 2018.

Keywords: Cynomolgus macaques; Healthy humans; Optical coherence tomography angiography (OCT-A); Vascular; Vessel density (VD).

Conflict of interest statement

All authors are affiliated with the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China. The author(s) have no potential competing interests to declare.

Figures

Fig. 1
Fig. 1
The OCT-A images of cynomolgus macaques and healthy humans in macular. a Retinal layer (b) Ring centering on macula with foveal ring (1 mm), four quadrants (superior, inferior, temporal, and nasal, 3 mm). (c) The En-face (d) Normal virtual colored macular vascular density
Fig. 2
Fig. 2
Histogram of vessel density (VD) in macula and optic disc of cynomolgus macaques and healthy humans
Fig. 3
Fig. 3
The OCT-A images of cynomolgus macaques and healthy humans in optic disc. Description: (a) Retinal layer (b) A ring with width of 0.75 mm, centering on the disc, automatically divided the scanned area into seven sections. c The En-face (d) Normal virtual colored vascular density

References

    1. Coscas Florence, Sellam Alexandre, Glacet-Bernard Agnès, Jung Camille, Goudot Mathilde, Miere Alexandra, Souied Eric H. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science. 2016;57(9):OCT211. doi: 10.1167/iovs.15-18793.
    1. Buttery RG, Hinrichsen CF, Weller WL, Haight JR. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis Res. 1991;31(2):169–187. doi: 10.1016/0042-6989(91)90110-Q.
    1. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–86. doi: 10.1161/01.CIR.24.1.82.
    1. Spaide RF, Klancnik JM, Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. doi: 10.1001/jamaophthalmol.2014.3616.
    1. Trindade-Porto C, Alonso-Llamazares A, Robledo T, et al. Fluorescein-induced adverse reaction. Allergy. 1999;54(11):1230. doi: 10.1034/j.1398-9995.1999.00416.x.
    1. Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7(3):115–129. doi: 10.4103/tjo.tjo_31_17.
    1. Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–E2402. doi: 10.1073/pnas.1500185112.
    1. Mastropasqua L, Borrelli E, Carpineto P, et al. Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol. 2018;38(4):1465–1472. doi: 10.1007/s10792-017-0608-1.
    1. Mastropasqua R, Toto L, Senatore A, et al. Optical coherence tomography angiography findings in Susac's syndrome: a case report. Int Ophthalmol. 2018;38(4):1803–1808. doi: 10.1007/s10792-017-0653-9.
    1. Jonas JB, Hayreh SS. Ophthalmoscopic appearance of the normal optic nerve head in rhesus monkeys. Invest Ophthalmol Vis Sci. 2000;41(10):2978–2983.
    1. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci. 2002;43(5):1673.
    1. Wilsey LJ, Reynaud J, Cull G, Burgoyne CF, Fortune B. Macular Structure and Function in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(4):1892–1900. doi: 10.1167/iovs.15-18119.
    1. T Michael N, Kim CBY, Munsey KM, Dashek RJ, Hoeve JNV. Regional choroidal blood flow and multifocal electroretinography in experimental glaucoma in rhesus macaques. Invest Ophthalmol Vis Sci. 2014;55(12):7786–7798. doi: 10.1167/iovs.14-14527.
    1. Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212–3217. doi: 10.1167/iovs.14-16270.
    1. Fang D, Tang FY, Huang H, Cheung CY, Chen H. Repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects. Br J Ophthalmol. 2019;103(3):415–420. doi: 10.1136/bjophthalmol-2018-311874.
    1. Li J, Yang YQ, Yang DY, et al. Reproducibility of perfusion parameters of optic disc and macula in rhesus monkeys by optical coherence tomography angiography. Chin Med J. 2016;129(9):1087–1090. doi: 10.4103/0366-6999.180532.
    1. Fan S, Ding X, Rao P, et al. Multimodal imaging of the retina and choroid in healthy Macaca fascicularis at different ages. Graefes Arch Clin Exp Ophthalmol. 2019;257(3):455–463. doi: 10.1007/s00417-019-04237-x.
    1. Yiu G, Wang Z, Munevar C, et al. Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections. Exp Eye Res. 2018;168:69–76. doi: 10.1016/j.exer.2018.01.012.
    1. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44. doi: 10.1016/j.ajo.2015.04.021.
    1. Cohen SY, Miere A, Nghiem-Buffet S, Fajnkuchen F, Souied EH, Mrejen S. Clinical applications of optical coherence tomography angiography: what we have learnt in the first 3 years. Eur J Ophthalmol. 2018;28(5):491–502. doi: 10.1177/1120672117753704.
    1. Jia Y, Ou T, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725. doi: 10.1364/OE.20.004710.
    1. Bajwa A, Aman R, Reddy AK. A comprehensive review of diagnostic imaging technologies to evaluate the retina and the optic disk. Int Ophthalmol. 2015;35(5):733–755. doi: 10.1007/s10792-015-0087-1.
    1. Hong BK, Nazari KH, Rao NA. Role of ultra-widefield fluorescein angiography in the management of uveitis. Can J Ophthalmol. 2013;48(6):489–493. doi: 10.1016/j.jcjo.2013.05.009.
    1. Weinhaus RS, Burke JM, Delori FC, Snodderly DM. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res. 1995;61(1):1–16. doi: 10.1016/S0014-4835(95)80053-0.
    1. Alterman M, Henkind P. Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma. Br J Ophthalmol. 1967;52(1):26–31. doi: 10.1136/bjo.52.1.26.
    1. Bonnin S, Mane V, Couturier A, et al. NEW INSIGHT INTO THE MACULAR DEEP VASCULAR PLEXUS IMAGED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015;35(11):2347–2352. doi: 10.1097/IAE.0000000000000839.
    1. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435–1444. doi: 10.1016/j.ophtha.2014.01.034.
    1. Agemy SA, Scripsema NK, Shah CM, et al. RETINAL VASCULAR PERFUSION DENSITY MAPPING USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN NORMALS AND DIABETIC RETINOPATHY PATIENTS. Retina. 2015;35(11):2353–2363. doi: 10.1097/IAE.0000000000000862.
    1. Liang MC, Witkin AJ. Optical coherence tomography angiography of mixed Neovascularizations in age-related macular degeneration. Dev Ophthalmol. 2016;56:62–70. doi: 10.1159/000442780.
    1. Miere A, Querques G, Semoun O, El Ameen A, Capuano V, Souied EH. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN EARLY TYPE 3 NEOVASCULARIZATION. Retina. 2015;35(11):2236–2241. doi: 10.1097/IAE.0000000000000834.
    1. Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016;100(11):1489–1493. doi: 10.1136/bjophthalmol-2015-307892.
    1. Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia. British Journal of Ophthalmology. 2017:bjophthalmol-2017-310476.

Source: PubMed

3
Abonnieren