Whole Body Vibration Training on Muscle Strength and Brain-Derived Neurotrophic Factor Levels in Elderly Woman With Knee Osteoarthritis: A Randomized Clinical Trial Study

Adriano Prado Simão, Vanessa Amaral Mendonça, Núbia Carelli Pereira Avelar, Sueli Ferreira da Fonseca, Jousielle Márcia Santos, Ana Carolina Coelho de Oliveira, Rosalina Tossige-Gomes, Vanessa Gonçalves César Ribeiro, Camila Danielle Cunha Neves, Cláudio Heitor Balthazar, Hércules Ribeiro Leite, Pedro Henrique Scheidt Figueiredo, Mário Bernardo-Filho, Ana Cristina Rodrigues Lacerda, Adriano Prado Simão, Vanessa Amaral Mendonça, Núbia Carelli Pereira Avelar, Sueli Ferreira da Fonseca, Jousielle Márcia Santos, Ana Carolina Coelho de Oliveira, Rosalina Tossige-Gomes, Vanessa Gonçalves César Ribeiro, Camila Danielle Cunha Neves, Cláudio Heitor Balthazar, Hércules Ribeiro Leite, Pedro Henrique Scheidt Figueiredo, Mário Bernardo-Filho, Ana Cristina Rodrigues Lacerda

Abstract

Background: Osteoarthritis of the knee (kOA) is a chronic, progressive, degenerative health condition that contributes to the imbalance between the synthesis and destruction of articular cartilage. Recently, whole body vibration (WBV) training has been recommended as an effective alternative for strength training in elderly people, and various physiological effects are obtained in response to exercise performed on a vibratory platform, such as an increase in muscle activation and improved muscle performance. However, the effects of WBV particularly on the strength of the quadriceps muscle and neuronal plasticity are unknown. Objective: The aim of this study was to evaluate the effects of adding WBV to squat training on the isometric quadriceps muscle strength (IQMS) and the plasma levels of brain-derived neurotrophic factor (BDNF) in elderly woman with kOA. Methods: Fifteen elderly women ≥65 years of age with kOA were randomized into two interventions: (1) the vibration group (VG), in which participants performed squat exercise training in association with WBV or (2) the exercise group (EG), in which participants performed squat exercise training without vibration, for 12 weeks 3×/week. Results: Compared to the EG group, the VG group demonstrated a significantly greater delta (Δ) in IQMS values (IC95% 0.43-7.06; p ≤ 0.05) and in Δ BDNF plasma levels (IC95% -32.51 to 4.217; p ≤ 0.05) after the intervention period. There was an association between increase of Δ BDNF plasma levels and increase of Δ IQMS (β = 0.57; R 2 = 0.32; p = 0.03). Conclusion: The addition of WBV to squat exercise training improves lower limb muscle performance in elderly women with kOA. These findings suggest that the improvement in muscle performance is related to neuromuscular adaptations induced by WBV. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03918291.

Keywords: brain-derived neurotrophic factor; muscle strength; osteoarthritis of knee; squat; whole body vibration.

Figures

Figure 1
Figure 1
The study flow chart. OA, osteoarthritis; VG, vibration group; EG, exercise group; WBV, whole body vibration.
Figure 2
Figure 2
The delta (Δ) in isometric quadriceps muscle strength (IQMS) in the vibration group (VG) and exercise group (EG). The data are presented as the mean and standard error. *VG is significantly different from EG (p ≤ 0.05). Data are presented in delta (Δ), i.e., the variation between the values measured before and after the intervention period (independent t-test).
Figure 3
Figure 3
The delta (Δ) in brain-derived neurotrophic factor (BDNF) in the vibration group (VG) and exercise group (EG). The data are presented as the mean and standard error. *VG is significantly different from EG (p ≤ 0.05). Data are presented in delta (Δ), i.e., the variation between the values measured before and after the intervention period (independent t-test).
Figure 4
Figure 4
Correlation between the delta (Δ) of the isometric quadriceps muscle strength (IQMS) and plasma concentration of brain-derived neurotrophic factor (BDNF) in older women with osteoarthritis (OA) of the knee. β, standardized regression coefficient; R2, R square (Pearson correlation).

References

    1. Abercromby A. F., Amonette W. E., Layne C. S., McFarlin B. K., Hinman M. R., Paloski W. H. (2007). Variation in neuromuscular responses during acute whole-body vibration exercise. Med. Sci. Sports Exerc. 39, 1642–1650. 10.1249/mss.0b013e318093f551, PMID:
    1. Avelar N. C., Simão A. P., Tossige-Gomes R., Neves C. D., Rocha-Vieira E., Coimbra C. C., et al. . (2011). The effect of adding whole-body vibration to squat training on the functional performance and self-report of disease status in elderly patients with knee osteoarthritis: a randomized, controlled clinical study. J. Altern. Complement. Med. 17, 1149–1155. 10.1089/acm.2010.0782, PMID:
    1. Baumgartner R. N., Waters D. L., Gallagher D., Morley J. E., Garry P. J. (1999). Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 107, 123–136. 10.1016/S0047-6374(98)00130-4, PMID:
    1. Bogaerts A., Delecluse C., Claessens A. L., Coudyzer W., Boonen S., Verschueren S. M. (2007). Impact of whole-body vibration training versus fitness training on muscle strength and muscle mass in older men: a 1-year randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 62, 630–635. 10.1093/gerona/62.6.630, PMID:
    1. Bokaeian H. R., Bakhtiary A. H., Mirmohammadkhani M., Moghimi J. (2016). The effect of adding whole body vibration training to strengthening training in the treatment of knee osteoarthritis: a randomized clinical trial. J. Bodyw. Mov. Ther. 20, 334–340. 10.1016/j.jbmt.2015.08.005, PMID:
    1. Cardinale M., Bosco C. (2003). The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 31, 3–7. 10.1097/00003677-200301000-00002, PMID:
    1. Chevrel G., Hohlfeld R., Sendtner M. (2006). The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 33, 462–476. 10.1002/mus.20444, PMID:
    1. Cochrane D. J., Sartor F., Winwood K., Stannard S. R., Narici M. V., Rittweger J. (2008). A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. Arch. Phys. Med. Rehabil. 89, 815–821. 10.1016/j.apmr.2007.09.055, PMID:
    1. Cochrane D. J., Stannard S. R., Firth E. C., Rittweger J. (2010). Acute whole-body vibration elicits post-activation potentiation. Eur. J. Appl. Physiol. 108, 311–319. 10.1007/s00421-009-1215-2, PMID:
    1. Coelho F. M., Pereira D. S., Lustosa L. P., Silva J. P., Dias J. M., Dias R. C., et al. . (2012). Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch. Gerontol. Geriatr. 54, 415–420. 10.1016/j.archger.2011.05.014, PMID:
    1. Goldring S. R., Goldring M. B. (2004). The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. 427, 27–36. 10.1097/01.blo.0000144854.66565.8f
    1. Gomes W. F., Lacerda A. C., Brito-Melo G. E., Fonseca S. F., Rocha-Vieira E., Leopoldino A. A., et al. . (2016). Aerobic training modulates T cell activation in elderly women with knee osteoarthritis. Braz. J. Med. Biol. Res. 49:e5181. 10.1590/1414-431x20165181, PMID:
    1. Gomes W. F., Lacerda A. C., Mendonca V. A., Arrieiro A. N., Fonseca S. F., Amorim M. R., et al. . (2012). Effect of aerobic training on plasma cytokines and soluble receptors in elderly women with knee osteoarthritis, in response to acute exercise. Clin. Rheumatol. 31, 759–766. 10.1007/s10067-011-1927-7, PMID:
    1. Hautier C., Bonnefoy M. (2007). Training for older adults. Ann. Readapt. Med. Phys. 50, 469–474. 10.1016/j.annrmp.2007.04.018
    1. Hinton R., Moody R. L., Davis A. W., Thomas S. F. (2002). Osteoarthritis: diagnosis and therapeutic considerations. Am. Fam. Physician 65, 841–848. PMID:
    1. Kean C. O., Birmingham T. B., Garland S. J., Bryant D. M., Giffin J. R. (2010). Minimal detectable change in quadriceps strength and voluntary muscle activation in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 91, 1447–1451. 10.1016/j.apmr.2010.06.002, PMID:
    1. Kellgren J. H., Lawrence J. S. (1957). Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502.
    1. Knaepen K., Goekint M., Heyman E. M., Meeusen R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 40, 765–801. 10.2165/11534530-000000000-00000, PMID:
    1. Krabbe K. S., Mortensen E. L., Avlund K., Pedersen A. N., Pedersen B. K., Jørgensen T., et al. (2009). Brain-derived neurotrophic factor predicts mortality risk in older women. J. Am. Geriatr. Soc. 57, 1447–1452. 10.1111/j.1532-5415.2009.02345.x
    1. Lindsay R. M. (1994). Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neurotrophins and ciliary neurotrophic factor. Neurobiol. Aging 15, 249–251. 10.1016/0197-4580(94)90124-4, PMID:
    1. Marín P. J., Bunker D., Rhea M. R., Ayllón F. N. (2009). Neuromuscular activity during whole-body vibration of different amplitudes and footwear conditions: implications for prescription of vibratory stimulation. J. Strength Cond. Res. 23, 2311–2316. 10.1519/JSC.0b013e3181b8d637, PMID:
    1. Marx F. C., Oliveira L. M. D., Bellini C. G., Ribeiro M. C. C. (2006). Translation and cultural validation of the Lequesne’s algofunctional questionnaire for osteoarthritis of knee and hip for Portuguese language. Rev. Bras. Reumatol. 46, 253–260.
    1. Matthews V. B., Astrom M. B., Chan M. H., Bruce C. R., Krabbe K. S., Prelovsek O., et al. . (2009). Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418. 10.1007/s00125-009-1364-1, PMID:
    1. McNair P. J., Marshall R. N., Maguire K. (1996). Swelling of the knee joint: effects of exercise on quadriceps muscle strength. Arch. Phys. Med. Rehabil. 77, 896–899. 10.1016/S0003-9993(96)90277-4, PMID:
    1. Merriman H., Jackson K. (2009). The effects of whole-body vibration training in aging adults: a systematic review. J. Geriatr. Phys. Ther. 32, 134–145. 10.1519/00139143-200932030-00009, PMID:
    1. Michael J. W., Schluter-Brust K. U., Eysel P. (2010). The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch. Arztebl. Int. 107, 152–162. 10.3238/arztebl.2010.0152, PMID:
    1. Neves C. D., Tossige-Gomes R., Avelar N. C. P., Lacerda A. C. (2011). Assessing the reliability of isometric strength of knee extensors by using load cell. Ter. Man 9, 16–21.
    1. Park Y. G., Kwon B. S., Park J. W., Cha D. Y., Nam K. Y., Sim K. B., et al. . (2013). Therapeutic effect of whole body vibration on chronic knee osteoarthritis. Ann. Rehabil. Med. 37, 505–515. 10.5535/arm.2013.37.4.505, PMID:
    1. Rees S. S., Murphy A. J., Watsford M. L. (2008). Effects of whole-body vibration exercise on lower-extremity muscle strength and power in an older population: a randomized clinical trial. Phys. Ther. 88, 462–470. 10.2522/ptj.20070027, PMID:
    1. Roelants M., Delecluse C., Verschueren S. M. (2004). Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J. Am. Geriatr. Soc. 52, 901–908. 10.1111/j.1532-5415.2004.52256.x
    1. Sakuma K., Yamaguchi A. (2011). The recent understanding of the neurotrophin’s role in skeletal muscle adaptation. J. Biomed. Biotechnol. 2011:201696. 10.1155/2011/201696, PMID:
    1. Schabitz W. R., Steigleder T., Cooper-Kuhn C. M., Schwab S., Sommer C., Schneider A., et al. . (2007). Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38, 2165–2172. 10.1161/STROKEAHA.106.477331, PMID:
    1. Schiphof D., De Klerk B. M., Koes B. W., Bierma-Zeinstra S. (2008). Good reliability, questionable validity of 25 different classification criteria of knee osteoarthritis: a systematic appraisal. J. Clin. Epidemiol. 61, 1205–1215. 10.1016/j.jclinepi.2008.04.003, PMID:
    1. Sharma L., Cahue S., Song J., Hayes K., Pai Y. C., Dunlop D. (2003). Physical functioning over three years in knee osteoarthritis: role of psychosocial, local mechanical, and neuromuscular factors. Arthritis Rheum. 48, 3359–3370. 10.1002/art.11420, PMID:
    1. Srikanth V. K., Fryer J. L., Zhai G., Winzenberg T. M., Hosmer D., Jones G. (2005). A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr. Cartil. 13, 769–781. 10.1016/j.joca.2005.04.014, PMID:
    1. Teixeira A. L., Barbosa I. G., Diniz B. S., Kummer A. (2010). Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomark. Med 4, 871–887. 10.2217/bmm.10.111, PMID:
    1. Trans T., Aaboe J., Henriksen M., Christensen R., Bliddal H., Lund H. (2009). Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis. Knee 16, 256–261. 10.1016/j.knee.2008.11.014, PMID:
    1. Valente M. J., MacKinnon D. P. (2017). Comparing models of change to estimate the mediated effect in the pretest-posttest control group design. Struct. Equ. Modeling 24, 428–450. 10.1080/10705511.2016.1274657
    1. Wang P., Yang L., Li H., Lei Z., Yang X., Liu C., et al. (2016a). Effects of whole-body vibration training with quadriceps strengthening exercise on functioning and gait parameters in patients with medial compartment knee osteoarthritis: a randomized controlled preliminary study. Physiotherapy 102, 86–92. 10.1016/j.physio.2015.03.3720
    1. Wang P., Yang L., Liu C., Wei X., Yang X., Zhou Y., et al. (2016b). Effects of whole body vibration exercise associated with quadriceps resistance exercise on functioning and quality of life in patients with knee osteoarthritis: a randomized controlled trial. Clin. Rehabil. 30, 1074–1087. 10.1177/0269215515607970
    1. Yu T., Chang Y., Gao X. L., Li H., Zhao P. (2017). Dynamic expression and the role of BDNF in exercise-induced skeletal muscle regeneration. Int. J. Sports Med. 38, 959–966. 10.1055/s-0043-118343, PMID:
    1. Zacaron K., Dias J., Abreu N., Dias R. (2006). Physical activity levels, pain and swelling and their relationships with knee muscle dysfunction in elderly people with osteoarthritis. Braz. J. Phys. Ther. 10, 279–284. 10.1590/S1413-35552006000300005

Source: PubMed

3
Abonnieren