Whey protein supplementation for the preservation of mass and muscular strength of patients with heart failure: study protocol for a randomized controlled trial

Elisa Maia Dos Santos, Roger de Moraes, Eduardo Vera Tibiriça, Grazielle Vilas Bôas Huguenin, Annie Seixas Belo Moreira, Andrea Rocha De Lorenzo, Elisa Maia Dos Santos, Roger de Moraes, Eduardo Vera Tibiriça, Grazielle Vilas Bôas Huguenin, Annie Seixas Belo Moreira, Andrea Rocha De Lorenzo

Abstract

Background: Heart failure (HF) is an important public health problem, considered a new epidemic with high morbidity and mortality. The progression of HF often determines weight reduction, muscle mass loss, and reduced physical ability. Whey protein supplementation may increase the effects of exercise on strength and muscle mass, in addition to promoting improved endothelial function, body composition and quality of life. However, studies are needed to evaluate its benefits in patients with HF.

Methods/design: This is a double-blind, randomized, placebo-controlled clinical trial in which patients with HF will be randomly allocated to two groups to receive supplementation with whey protein or placebo, associated with supervised exercise, for 12 weeks. The frequency of exercise will be three times a week. The study variables will be evaluated at baseline and 12 weeks. The main outcome will be maintenance of muscle mass and strength. Microvascular reactivity, quality of life, and inflammatory parameters will be evaluated as secondary outcomes.

Discussion: HF is associated with severe loss of muscle mass and strength, directly contributing to exercise intolerance and inability to maintain daily life activities, becoming a strong predictor of reduced quality of life and mortality. The results of this study will add to the evidence base for providing new dietary recommendations.

Trial registration: ClinicalTrials.gov, ID: NCT03142399 . Registered on 29 May 2016. Effect of Whey Protein' Supplementation and Exercise in Patients with Heart Failure (PROT-HF).

Keywords: Cardiac rehabilitation; Heart failure; Randomized controlled trial; Study design; Whey proteins.

Conflict of interest statement

Elisa Maia dos Santos, MS is a dietitian in the Instituto Nacional de Cardiologia and a PhD student at Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Roger de Moraes, PhD is a professor and researcher at the Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil; Eduardo Vera Tibiriça, PhD is a professor and researcher at the Instituto Nacional de Cardiologia and Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Grazielle Vilas Bôas Huguenin, PhD is a professor and researcher at the Universidade Federal Fluminense, Niterói, Brazil and Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brazil; Annie Seixas Belo Moreira, PhD is a professor and researcher at the Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Andrea Rocha De Lorenzo, PhD is a professor and researcher at the Instituto Nacional de Cardiologia and Universidade Federal do Rio de Janeiro.

Ethical approval was obtained from the Ethics and Research Committee of the National Institute of Cardiology, in Rio de Janeiro, Brazil and the participants will sign the free and informed consent form.

We have gained informed consent for publication of the dataset from patients at the point of recruitment to the trial. All the patient details will be fully anonymous.

The authors declare that they have no competing interests.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flowchart
Fig. 2
Fig. 2
Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT): the schedule of enrollment, interventions, and assessments

References

    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. doi: 10.1002/ejhf.592.
    1. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–619. doi: 10.1161/HHF.0b013e318291329a.
    1. McMurray JJJV. Improving outcomes in heart failure: a personal perspective. Eur Heart J. 2015;36(48):3467–3470. doi: 10.1093/eurheartj/ehv565.
    1. von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14(6):323–341. doi: 10.1038/nrcardio.2017.51.
    1. Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–46. doi: 10.1016/j.ijcard.2016.07.135.
    1. Josiak K, Jankowska EA, Piepoli MF, Banasiak W, Ponikowski P. Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J Cachexia Sarcopenia Muscle. 2014;5(4):287–296. doi: 10.1007/s13539-014-0152-z.
    1. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6(3):197–207. doi: 10.1002/jcsm.12043.
    1. Kim TN, Choi KM. Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab. 2013;20(1):1–10. doi: 10.11005/jbm.2013.20.1.1.
    1. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–543. doi: 10.1016/j.cell.2010.07.011.
    1. Saitoh M, Dos Santos MR, Ebner N, Emami A, Konishi M, Ishida J, et al. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from studies investigating co-morbidities aggravating heart failure. Wien Klin Wochenschr. 2016;128(Suppl 7):497–504. doi: 10.1007/s00508-016-1112-8.
    1. Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet Lond Engl. 1997;349(9058):1050–1053. doi: 10.1016/S0140-6736(96)07015-8.
    1. Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging Catabolism study. Circulation. 2012;125(22):2716–2727. doi: 10.1161/CIRCULATIONAHA.111.047381.
    1. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–1450. doi: 10.1001/jama.2009.454.
    1. Sandri M, Kozarez I, Adams V, Mangner N, Höllriegel R, Erbs S, et al. Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction study. Eur Heart J. 2012;33(14):1758–1768. doi: 10.1093/eurheartj/ehr469.
    1. Lenk K, Erbs S, Höllriegel R, Beck E, Linke A, Gielen S, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2012;19(3):404–411. doi: 10.1177/1741826711402735.
    1. Piepoli MF, Conraads V, Corrà U, Dickstein K, Francis DP, Jaarsma T, et al. Exercise training in heart failure: from theory to practice. a consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011;13(4):347–357. doi: 10.1093/eurjhf/hfr017.
    1. Piepoli MF, Davos C, Francis DP, Coats AJS, ExTraMATCH Collaborative Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH) BMJ. 2004;328(7433):189. doi: 10.1136/.
    1. Bohé J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003;552(Pt 1):315–324. doi: 10.1113/jphysiol.2003.050674.
    1. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897–904. doi: 10.1113/jphysiol.2008.164087.
    1. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003;78(2):250–258. doi: 10.1093/ajcn/78.2.250.
    1. Koopman R, Walrand S, Beelen M, Gijsen AP, Kies AK, Boirie Y, et al. Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men. J Nutr. 2009;139(9):1707–1713. doi: 10.3945/jn.109.109173.
    1. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D. Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr. 2007;86(2):451–456. doi: 10.1093/ajcn/86.2.451.
    1. Tang JE, Phillips SM. Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care. 2009;12(1):66–71. doi: 10.1097/MCO.0b013e32831cef75.
    1. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280(2):E340–E348. doi: 10.1152/ajpendo.2001.280.2.E340.
    1. Koopman R, Wagenmakers AJM, Manders RJF, Zorenc AHG, Senden JMG, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005;288(4):E645–E653. doi: 10.1152/ajpendo.00413.2004.
    1. Lane M, Herda T, Fry A, Cooper M, Andre M, Gallagher P. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey. Biol Sport. 2017;34(2):197–203. doi: 10.5114/biolsport.2017.65339.
    1. Pennings B, Boirie Y, Senden JMG, Gijsen AP, Kuipers H, van Loon LJC. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011;93(5):997–1005. doi: 10.3945/ajcn.110.008102.
    1. Chalé A, Cloutier GJ, Hau C, Phillips EM, Dallal GE, Fielding RA. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2013;68(6):682–690. doi: 10.1093/gerona/gls221.
    1. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJM. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101(2):279–286. doi: 10.3945/ajcn.114.090290.
    1. Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, et al. Sarcopenia, cachexia, and muscle performance in heart failure: review update 2016. Int J Cardiol. 2017;238:5–11. doi: 10.1016/j.ijcard.2017.03.155.
    1. Lourenço BH, Vieira LP, Macedo A, Nakasato M, Marucci Mde FN, Bocchi EA. Nutritional status and adequacy of energy and nutrient intakes among heart failure patients. Arq Bras Cardiol. 2009;93(5):541–548. doi: 10.1590/S0066-782X2009001100016.
    1. OpenEpi – Toolkit Shell for Developing New Applications [Internet]. Accessed 5 Jun 2017. Available from: .
    1. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016;103(3):830–840. doi: 10.3945/ajcn.115.113357.
    1. Ling CHY, de Craen AJM, Slagboom PE, Gunn DA, Stokkel MPM, Westendorp RGJ, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr Edinb Scotl. 2011;30(5):610–615. doi: 10.1016/j.clnu.2011.04.001.
    1. Carvalho VO, Guimarães GV, Carrara D, Bacal F, Bocchi EA. Validation of the Portuguese version of the Minnesota Living with Heart Failure Questionnaire. Arq Bras Cardiol. 2009;93(1):39–44. doi: 10.1590/S0066-782X2009000700008.
    1. Schmidt RT, Toews JV. Grip strength as measured by the Jamar dynamometer. Arch Phys Med Rehabil. 1970;51(6):321–327.
    1. Spijkerman DC, Snijders CJ, Stijnen T, Lankhorst GJ. Standardization of grip strength measurements. Effects on repeatability and peak force. Scand J Rehabil Med. 1991;23(4):203–206.
    1. Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care. 2015;18(5):465–470. doi: 10.1097/MCO.0000000000000202.
    1. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225. doi: 10.1161/CIR.0b013e3181e52e69.
    1. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol. 2009;10(1):1–25. doi: 10.1093/ejechocard/jen303.
    1. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14(7):611–644. doi: 10.1093/ehjci/jet105.
    1. Cordovil I, Huguenin G, Rosa G, Bello A, Köhler O, de Moraes R, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvasc Res. 2012;83(3):376–379. doi: 10.1016/j.mvr.2012.01.004.

Source: PubMed

3
Abonnieren