Simplified pulse wave velocity measurement in children: Is the pOpmètre valid?

Saïd Bichali, Alexandra Bruel, Marion Boivin, Gwénaëlle Roussey, Bénédicte Romefort, Jean-Christophe Rozé, Emma Allain-Launay, Saïd Bichali, Alexandra Bruel, Marion Boivin, Gwénaëlle Roussey, Bénédicte Romefort, Jean-Christophe Rozé, Emma Allain-Launay

Abstract

In population exposed to cardiovascular risk, aortic stiffness is an important marker which is assessed by carotid-to-femoral pulse wave velocity (PWV). In childhood, the validated applanation tonometer SphygmoCor® can be used to measure PWV, but is limited in routine practice by the child's cooperation and operator's experience. An alternative device, the pOpmètre® is validated in adults and rapidly measures finger-to-toe PWV using 2 oxymeter-like sensors. The aim of this study is to validate the pOpmètre® device in children aged between 4 and 8 years. We compared simultaneous PWV measurements of the two devices, SphygmoCor® and pOpmètre®, in a training group, using the Bland-Altman method. Then we proposed an algorithm to correct pOpmètre® PWV (PWVpop). Finally, we validated this new algorithm in a validation group of children using the Bland-Altman method. This prospective study enrolled 26 children in the training group. Mean PWVpop was 3.919 ± 0.587 m/s and mean SphygmoCor® PWV was 4.280 ± 0.383 m/s, with a difference of -0.362(CI95%(-0.546;-0.178)) m/s. A new algorithm was defined using transit time (TTpop): corrected PWVpop (m/s) = 0.150/TTpop(s) + 1.381*Height(m) + 1.148. We enrolled 24 children in the validation group. Mean corrected PWVpop was 4.231 ± 0.189 m/s and mean SphygmoCor® PWV was 4.208 ± 0.296 m/s with a corrected difference of 0.023(CI95%(-0.086;0.131)) m/s. With this algorithm correction, we found an agreement between PWV measured by the SphygmoCor® and the pOpmètre®, with a difference of less than 10%. Using this algorithm, the pOpmètre® could be used in clinical or research practice in young children exposed to cardiovascular risk. (This study was registered as NCT02991703).

Conflict of interest statement

There is no conflict of interest to report.

Figures

Fig 1. Flow chart.
Fig 1. Flow chart.
Fig 2. Bland-Altman graph for the 26…
Fig 2. Bland-Altman graph for the 26 children from the training group.
Mean ± 2 standard deviations = -0.362 ± 0.958 m/s. PWV: pulse wave velocity.
Fig 3. Bland-Altman graph for the 24…
Fig 3. Bland-Altman graph for the 24 children from the validation group.
Mean ± 2 standard deviations = 0.023 ± 0.540 m/s. PWV: pulse wave velocity.

References

    1. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R, Dolan L, Imperatore G, et al. Association of Type 1 Diabetes vs Type 2 Diabetes Diagnosed During Childhood and Adolescence With Complications During Teenage Years and Young Adulthood. JAMA. 2017. 28;317(8):825–35.
    1. Covic A, Mardare N, Gusbeth-Tatomir P, Brumaru O, Gavrilovici C, Munteanu M, et al. Increased arterial stiffness in children on haemodialysis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc—Eur Ren Assoc. 2006. March;21(3):729–35.
    1. Bayman E, Drake AJ, Piyasena C. Prematurity and programming of cardiovascular disease risk: a future challenge for public health? Arch Dis Child Fetal Neonatal Ed. 2014. November;99(6):F510–514. 10.1136/archdischild-2014-306742
    1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001. May;37(5):1236–41. 10.1161/01.hyp.37.5.1236
    1. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002. January;39(1):10–5. 10.1161/hy0102.099031
    1. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010. March 30;55(13):1318–27. 10.1016/j.jacc.2009.10.061
    1. Laurent S, Marais L, Boutouyrie P. The Noninvasive Assessment of Vascular Aging. Can J Cardiol. 2016;32(5):669–79. 10.1016/j.cjca.2016.01.039
    1. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014. August;28(8):475–81. 10.1038/jhh.2013.144
    1. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010. August;56(2):217–24. 10.1161/HYPERTENSIONAHA.110.152686
    1. Curcio S, García-Espinosa V, Arana M, Farro I, Chiesa P, Giachetto G, et al. Growing-Related Changes in Arterial Properties of Healthy Children, Adolescents, and Young Adults Nonexposed to Cardiovascular Risk Factors: Analysis of Gender-Related Differences. Int J Hypertens. 2016;2016:4982676 10.1155/2016/4982676
    1. Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010. October;31(19):2338–50. 10.1093/eurheartj/ehq165
    1. Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernández-Fornoso JA, Redon J. Blood Pressure and Obesity Exert Independent Influences on Pulse Wave Velocity in Youth. Hypertension. 2012. January 8;60(2):550–5. 10.1161/HYPERTENSIONAHA.112.194746
    1. Lefferts WK, Augustine JA, Spartano NL, Atallah-Yunes NH, Heffernan KS, Gump BB. Racial Differences in Aortic Stiffness in Children. J Pediatr. 2017. January;180:62–7. 10.1016/j.jpeds.2016.09.071
    1. Alivon M, Vo-Duc Phuong T, Vignon V, Bozec E, Khettab H, Hanon O, et al. A novel device for measuring arterial stiffness using finger-toe pulse wave velocity: Validation study of the pOpmètre®. Arch Cardiovasc Dis. 2015. April;108(4):227–34. 10.1016/j.acvd.2014.12.003
    1. Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, et al. Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension. 2000. December;36(6):952–6. 10.1161/01.hyp.36.6.952
    1. Obeid H, Khettab H, Marais L, Hallab M, Laurent S, Boutouyrie P. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation. J Hypertens. 2017. August;35(8):1618–25. 10.1097/HJH.0000000000001371
    1. Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010. June;4(2):34–40.
    1. Stabouli S, Printza N, Zervas C, Dotis J, Chrysaidou K, Maliahova O, et al. Comparison of the SphygmoCor XCEL device with applanation tonometry for pulse wave velocity and central blood pressure assessment in youth. J Hypertens. 2019. January;37(1):30–36. 10.1097/HJH.0000000000001819
    1. Foo JYA, Wilson SJ, Williams GR, Coates A, Harris M-A, Cooper DM. Predictive regression equations and clinical uses of peripheral pulse timing characteristics in children. Physiol Meas. 2005. June;26(3):317–28. 10.1088/0967-3334/26/3/015
    1. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012. March;30(3):445–8. 10.1097/HJH.0b013e32834fa8b0
    1. Thurn D, Doyon A, Sözeri B, Bayazit AK, Canpolat N, Duzova A, et al. Aortic Pulse Wave Velocity in Healthy Children and Adolescents: Reference Values for the Vicorder Device and Modifying Factors. Am J Hypertens. 2015. December;28(12):1480–8. 10.1093/ajh/hpv048
    1. Hidvégi EV, Illyés M, Benczúr B, Böcskei RM, Rátgéber L, Lenkey Z, et al. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hypertens. 2012. December;30(12):2314–21. 10.1097/HJH.0b013e328359562c
    1. Kis E, Cseprekál O, Kerti A, Salvi P, Benetos A, Tisler A, et al. Measurement of pulse wave velocity in children and young adults: a comparative study using three different devices. Hypertens Res. 2011. November;34(11):1197–202. 10.1038/hr.2011.103
    1. Kracht D, Shroff R, Baig S, Doyon A, Jacobi C, Zeller R, et al. Validating a New Oscillometric Device for Aortic Pulse Wave Velocity Measurements in Children and Adolescents. Am J Hypertens. 2011. January 12;24(12):1294–9. 10.1038/ajh.2011.147
    1. Keehn L, Milne L, McNeill K, Chowienczyk P, Sinha MD. Measurement of pulse wave velocity in children: comparison of volumetric and tonometric sensors, brachial-femoral and carotid-femoral pathways. J Hypertens. 2014. July;32(7):1464 10.1097/HJH.0000000000000203
    1. Mora-Urda AI, Molina MDCB, Mill JG, Montero-López P. Carotid-Femoral Pulse Wave Velocity in Healthy Spanish Children: Reference Percentile Curves. J Clin Hypertens Greenwich Conn. 2017. March;19(3):227–34.
    1. Lowenthal A, Evans JMA, Punn R, Nourse SE, Vu CN, Popat RA, et al. Arterial applanation tonometry: feasibility and reproducibility in children and adolescents. Am J Hypertens. 2014. September;27(9):1218–24. 10.1093/ajh/hpu034
    1. Sigrist MK, Chiarelli G, Levin A, Romann A, Weber C. Pulse wave velocity measurements are reproducible in multiple trained observers: a short report. Nephron Clin Pract. 2010;116(1):c60–64. 10.1159/000314664
    1. Ghazi L, Dudenbostel T, Xing D, Ejem D, Turner-Henson A, Joiner CI, et al. Assessment of vascular function in low socioeconomic status preschool children: a pilot study. J Am Soc Hypertens JASH. 2017. February;11(2):101–9. 10.1016/j.jash.2016.12.006
    1. Lund F. Digital pulse plethysmography (DPG) in studies of the hemodynamic response to nitrates—a survey of recording methods and principles of analysis. Acta Pharmacol Toxicol (Copenh). 1986;59 Suppl 6:79–96.
    1. Scherdel P, Botton J, Rolland-Cachera M-F, Léger J, Pelé F, Ancel PY, et al. Should the WHO growth charts be used in France? PloS One. 2015;10(3):e0120806 10.1371/journal.pone.0120806
    1. Seki M, Kurishima C, Kawasaki H, Masutani S, Senzaki H. Aortic stiffness and aortic dilation in infants and children with tetralogy of Fallot before corrective surgery: evidence for intrinsically abnormal aortic mechanical property. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2012. February;41(2):277–82.
    1. Chen S, Chetty S, Lowenthal A, Evans JM, Vu C, Stauffer KJ, et al. Feasibility of neonatal pulse wave velocity and association with maternal hemoglobin A1c. Neonatology. 2015;107(1):20–6. 10.1159/000366467
    1. Koudsi A, Oldroyd J, McElduff P, Banerjee M, Vyas A, Cruickshank JK. Maternal and neonatal influences on, and reproducibility of, neonatal aortic pulse wave velocity. Hypertens Dallas Tex 1979. 2007. January;49(1):225–31.
    1. Odri Komazec I, Posod A, Schwienbacher M, Resch M, Pupp Peglow U, Kiechl S, et al. Aortic Elastic Properties in Preschool Children Born Preterm. Arterioscler Thromb Vasc Biol. 2016. November;36(11):2268–74. 10.1161/ATVBAHA.116.308144
    1. Demicheva E, Crispi F. Long-term follow-up of intrauterine growth restriction: cardiovascular disorders. Fetal Diagn Ther. 2014;36(2):143–53. 10.1159/000353633
    1. Vieux R, Gerard M, Roussel A, Sow A, Gatin A, Guillemin F, et al. Kidneys in 5-year-old preterm-born children: a longitudinal cohort monitoring of renal function. Pediatr Res. 2017. December;82(6):979–85. 10.1038/pr.2017.148
    1. Vieux R, Hascoët J-M, Franck P, Guillemin F. Increased albuminuria in 4-year-old preterm-born children with normal height. J Pediatr. 2012. June;160(6):923–928.e1. 10.1016/j.jpeds.2011.12.005
    1. Borchert-Mörlins B, Thurn D, Schmidt BMW, Büscher AK, Oh J, Kier T, et al. Factors associated with cardiovascular target organ damage in children after renal transplantation. Pediatr Nephrol Berl Ger. 2017. November;32(11):2143–54.
    1. Edgell H, Stickland MK, and MacLean JE. A simplified measurement of pulse wave velocity is not inferior to standard measurement in young adults and children. Blood Press Monit. 2016. June;21(3):192–95. 10.1097/MBP.0000000000000183

Source: PubMed

3
Abonnieren