Treating Disorders of Consciousness With Apomorphine: Protocol for a Double-Blind Randomized Controlled Trial Using Multimodal Assessments

Leandro R D Sanz, Nicolas Lejeune, Séverine Blandiaux, Estelle Bonin, Aurore Thibaut, Johan Stender, Neal M Farber, Ross D Zafonte, Nicholas D Schiff, Steven Laureys, Olivia Gosseries, Leandro R D Sanz, Nicolas Lejeune, Séverine Blandiaux, Estelle Bonin, Aurore Thibaut, Johan Stender, Neal M Farber, Ross D Zafonte, Nicholas D Schiff, Steven Laureys, Olivia Gosseries

Abstract

Background: There are few available therapeutic options to promote recovery among patients with chronic disorders of consciousness (DOC). Among pharmacological treatments, apomorphine, a dopamine agonist, has exhibited promising behavioral effects and safety of use in small-sample pilot studies. The true efficacy of the drug and its neural mechanism are still unclear. Apomorphine may act through a modulation of the anterior forebrain mesocircuit, but neuroimaging and neurophysiological investigations to test this hypothesis are scarce. This clinical trial aims to (1) assess the treatment effect of subcutaneous apomorphine infusions in patients with DOC, (2) better identify the phenotype of responders to treatment, (3) evaluate tolerance and side effects in this population, and (4) examine the neural networks underlying its modulating action on consciousness. Methods/Design: This study is a prospective double-blind randomized parallel placebo-controlled trial. Forty-eight patients diagnosed with DOC will be randomized to receive a 30-day regimen of either apomorphine hydrochloride or placebo subcutaneous infusions. Patients will be monitored at baseline 30 days before initiation of therapy, during treatment and for 30 days after treatment washout, using standardized behavioral scales (Coma Recovery Scale-Revised, Nociception Coma Scale-Revised), neurophysiological measures (electroencephalography, body temperature, actigraphy) and brain imaging (magnetic resonance imaging, positron emission tomography). Behavioral follow-up will be performed up to 2 years using structured phone interviews. Analyses will look for changes in behavioral status, circadian rhythmicity, brain metabolism, and functional connectivity at the individual level (comparing before and after treatment) and at the group level (comparing apomorphine and placebo arms, and comparing responder and non-responder groups). Discussion: This study investigates the use of apomorphine for the recovery of consciousness in the first randomized placebo-controlled double-blind trial using multimodal assessments. The results will contribute to define the role of dopamine agonists for the treatment of these challenging conditions and identify the neural correlates to their action. Results will bring objective evidence to further assess the modulation of the anterior forebrain mesocircuit by pharmacological agents, which may open new therapeutic perspectives. Clinical Trial Registration: EudraCT n°2018-003144-23; Clinicaltrials.gov n°NCT03623828 (https://ichgcp.net/clinical-trials-registry/NCT03623828).

Keywords: apomorphine; clinical trial; disorders of consciousness; dopamine; mesocircuit; minimally conscious state; protocol; unresponsive wakefulness syndrome.

Figures

Figure 1
Figure 1
The mesocircuit hypothesis. (A) Normal wakeful condition. Dopamine neurons in the striatum inhibit the pallidum, which prevents it from inhibiting the thalamus. Thalamic projections activate cortical networks and get positive feedback in return. Excitatory inputs from both the cortex and the thalamus activate the striatum to maintain the loop. (B) Brain injury. Withdrawal of thalamostriatal and corticostriatal projections following widespread neuronal deafferentation leads to reduced activity of the striatum, resulting in an inhibition of thalamic activity and decreased cortical activation. (C) Postulated action of apomorphine (APO) on brain injury. The facilitating action of apomorphine on striatal dopamine neurons could substitute for the missing inputs and restore the inhibitory striatopallidal projections, thus freeing the thalamus and its output toward the cortex.
Figure 2
Figure 2
Timeline of the study protocol. Blue segments: inpatient phases; Orange segments: multimodal assessments; Green segment: outpatient remote follow-up; dashed line: optional treatment extension; CRS-R, Coma Recovery Scale-Revised; NCS-R, Nociception Coma Scale-Revised; EEG, electroencephalography; PET, positron emission tomography; MRI, magnetic resonance imaging; T°, body core temperature; GOS-E, Glasgow Outcome Scale-Extended; Red crosses, 24 h EEG.

References

    1. Laureys S, Celesia GG, Cohadon F, Lavrijsen J, León-Carrión J, Sannita WG, et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. (2010) 8:68 10.1186/1741-7015-8-68
    1. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI. The minimally conscious state. Neurology. (2002) 58:349–53. 10.1212/WNL.58.3.349
    1. Thibaut A, Bruno M-A, Ledoux D, Demertzi A, Laureys S. tDCS in patients with disorders of consciousness Sham-controlled randomized double-blind study. Neurology. (2014) 82:1112–8. 10.1212/WNL.0000000000000260
    1. Thibaut A, Wannez S, Donneau AF, Chatelle C, Gosseries O, Bruno M-A, et al. . Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state. Brain Inj. (2017) 31:466–74. 10.1080/02699052.2016.1274776
    1. Martens G, Lejeune N, O'Brien AT, Fregni F, Martial C, Wannez S, et al. . Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state. Brain Stimul. (2018) 11:982–90. 10.1016/j.brs.2018.04.021
    1. Estraneo A, Pascarella A, Moretta P, Masotta O, Fiorenza S, Chirico G, et al. . Repeated transcranial direct current stimulation in prolonged disorders of consciousness: a double-blind cross-over study. J Neurol Sci. (2017) 375:464–70. 10.1016/j.jns.2017.02.036
    1. Chudy D, Deletis V, Almahariq F, Marčinković P, Škrlin J, ParadŽik V. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients. J Neurosurg. (2018) 128:1189–98. 10.3171/2016.10.JNS161071
    1. Magrassi L, Maggioni G, Pistarini C, Di Perri C, Bastianello S, Zippo AG, et al. . Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients. J Neurosurg. (2016) 125:972–81. 10.3171/2015.7.JNS15700
    1. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. . Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. (2007) 448:600–3. 10.1038/nature06041
    1. Thonnard M, Gosseries O, Demertzi A, Lugo Z, Vanhaudenhuyse A, Bruno M-A, et al. . Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct Neurol. (2014) 28:259–64. 10.11138/FNeur/2013.28.4.259
    1. Whyte J, Rajan R, Rosenbaum A, Katz D, Kalmar K, Seel R, et al. . Zolpidem and restoration of consciousness. Am J Phys Med Rehabil. (2014) 93:101–13. 10.1097/PHM.0000000000000069
    1. Nicola SM, Surmeier DJ, Malenka RC, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. (2000) 23:185–215. 10.1146/annurev.neuro.23.1.185
    1. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. (2001) 21:1787–94. 10.1523/JNEUROSCI.21-05-01787.2001
    1. Zafonte RD, Lexell J, Cullen N. Possible applications for dopaminergic agents following traumatic brain injury: part 1. J Head Trauma Rehabil. (2000) 15:1179–82. 10.1097/00001199-200010000-00014
    1. Zafonte RD, Lexell J, Cullen N. Possible applications for dopaminergic agents following traumatic brain injury: part 2. J Head Trauma Rehabil. (2001) 16:112–6. 10.1097/00001199-200102000-00014
    1. Gosseries O, Charland-Verville V, Thonnard M, Bodart O, Laureys S, Demertzi A. Amantadine, apomorphine and zolpidem in the treatment of disorders of consciousness. Curr Pharm Des. (2014) 20:4167–84. 10.2174/13816128113196660654
    1. Matsuda W, Komatsu Y, Yanaka K, Matsumura A. Levodopa treatment for patients in persistent vegetative or minimally conscious states. Neuropsychol Rehabil. (2005) 15:414–27. 10.1080/09602010443000588
    1. Ugoya SO, Akinyemi RO. The place of l-dopa/carbidopa in persistent vegetative state. Clin Neuropharmacol. (2010) 33:279–84. 10.1097/WNF.0b013e3182011070
    1. Passler MA, Riggs RV. Positive outcomes in traumatic brain injury-vegetative state: patients treated with bromocriptine. Arch Phys Med Rehabil. (2001) 82:311–5. 10.1053/apmr.2001.20831
    1. Whyte J, Vaccaro M, Grieb-Neff P, Hart T, Polansky M, Coslett HB. The effects of bromocriptine on attention deficits after traumatic brain injury. Am J Phys Med Rehabil. (2008) 87:85–99. 10.1097/PHM.0b013e3181619609
    1. Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A, et al. . Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. (2012) 366:819–26. 10.1056/NEJMoa1102609
    1. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, et al. . Practice guideline update recommendations summary: disorders of consciousness. Neurology. (2018) 91:450–60. 10.1212/WNL.0000000000005926
    1. Fridman EA, Calvar J, Bonetto M, Gamzu E, Krimchansky BZ, Meli F, et al. . Fast awakening from minimally conscious state with apomorphine. Brain Inj. (2009) 23:172–7. 10.1080/02699050802649662
    1. Fridman EA, Krimchansky BZ, Bonetto M, Galperin T, Gamzu ER, Leiguarda RC, et al. . Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj. (2010) 24:636–41. 10.3109/02699051003610433
    1. Anden NE, Rubenson A, Fuxe K, Hokfelt T. Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol. (1967) 19:627–9. 10.1111/j.2042-7158.1967.tb09604.x
    1. Ribarič S. The pharmacological properties and therapeutic use of apomorphine. Molecules. (2012) 17:5289–309. 10.3390/molecules17055289
    1. Gancher S. Pharmacokinetics of apomorphine in Parkinson's disease. J Neural Transm Suppl. (1995) 45:137–41.
    1. Bhidayasiri R, Garcia PJ, Henriksen T. Parkinsonism and related disorders practical management of adverse events related to apomorphine therapy. Park Relat Disord. (2016) 33:S42–8. 10.1016/j.parkreldis.2016.11.017
    1. Boyle A, Ondo W. Role of apomorphine in the treatment of Parkinson's disease. CNS Drugs. (2015) 29:83–9. 10.1007/s40263-014-0221-z
    1. Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine. Drugs Aging. (2004) 21:687–709. 10.2165/00002512-200421110-00001
    1. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. (2010) 33:1–9. 10.1016/j.tins.2009.11.002
    1. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA. (2014) 111:6473–8. 10.1073/pnas.1320969111
    1. Fischer DB, Boes AD, Demertzi A, Evrard HC, Laureys S, Edlow BL, et al. . A human brain network derived from coma-causing brainstem lesions. Neurology. (2016) 87:2427–34. 10.1212/WNL.0000000000003404
    1. Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev. (2009) 33:981–1003. 10.1016/j.neubiorev.2009.03.011
    1. Donnemiller E, Brenneis C, Wissel J, Scherfler C, Poewe W, Riccabona G, et al. . Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123I-beta-CIT and 123I-IBZM. Eur J Nucl Med. (2000) 27:1410–4. 10.1007/s002590000308
    1. Wagner AK, Scanlon JM, Becker CR, Ritter AC, Niyonkuru C, Dixon CE, et al. . The influence of genetic variants on striatal dopamine transporter and D2 receptor binding after TBI. J Cereb Blood Flow Metab. (2014) 34:1328–39. 10.1038/jcbfm.2014.87
    1. Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. (2014) 10:99–114. 10.1038/nrneurol.2013.279
    1. Laureys S, Faymonville M, Luxen A, Lamy M, Franck G, Maquet P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet. (2000) 355:1790–1. 10.1016/S0140-6736(00)02271-6
    1. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. (2004) 85:2020–9. 10.1016/j.apmr.2004.02.033
    1. Chatelle C, Majerus S, Whyte J, Laureys S, Schnakers C. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness. J Neurol Neurosurg Psychiatry. (2012) 83:1233–7. 10.1136/jnnp-2012-302987
    1. Doggrell SA, Hancox JC. Cardiac safety concerns for domperidone, an antiemetic and prokinetic, and galactogogue medicine. Expert Opin Drug Saf. (2014) 13:131–8. 10.1517/14740338.2014.851193
    1. Food and Drug Administration FDA Approved Labeling Text for NDA 021264 (2010).
    1. Levin HS, Boake C, Song J, Cauley SMC, Contant C, Diaz-marchan P, et al. . Validity and sensitivity to change of the extended glasgow outcome scale in mild to moderate traumatic brain. Injury. (2001) 18:575–84. 10.1089/089771501750291819
    1. Seel RT, Sherer M, Whyte J, Katz DI, Giacino JT, Rosenbaum AM, et al. . Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. (2010) 91:1795–813. 10.1016/j.apmr.2010.07.218
    1. Sattin D, Minati L, Rossi D, Covelli V, Giovannetti AM, Rosazza C, et al. . The coma recovery scale modified score. Int J Rehabil Res. (2015) 38:350–6. 10.1097/MRR.0000000000000135
    1. Schnakers C, Majerus S, Giacino J, Vanhaudenhuyse A, Bruno MA, Boly M, et al. . A French validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Inj. (2008) 22:786–92. 10.1080/02699050802403557
    1. Blume C, Lechinger J, Santhi N, Giudice R, del Gnjezda M-T, Pichler G, et al. . Significance of circadian rhythms in severely brain-injured patients. Neurology. (2017) 88:1933–41. 10.1212/WNL.0000000000003942
    1. Cruse D, Thibaut A, Demertzi A, Nantes JC, Bruno M-A, Gosseries O, et al. . Actigraphy assessments of circadian sleep-wake cycles in the Vegetative and Minimally Conscious States. BMC Med. (2013) 11:18. 10.1186/1741-7015-11-18
    1. Matsumoto M, Sugama J, Okuwa M, Dai M, Matsuo J, Sanada H. Non-invasive monitoring of core body temperature rhythms over 72h in 10 bedridden elderly patients with disorders of consciousness in a Japanese hospital: a pilot study. Arch Gerontol Geriatr. (2013) 57:428–32. 10.1016/j.archger.2013.05.009
    1. Murphy M, Bruno M-A, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, et al. . Propofol anesthesia and sleep: a high-density EEG study. Sleep. (2011) 34:283–91. 10.1093/sleep/34.3.283
    1. Kane NM, Curry SH, Butler SR, Cummins BH. Electrophysiological indicator of awakening from coma. Lancet. (1993) 341:688. 10.1016/0140-6736(93)90453-N
    1. Wijnen VJM, van Boxtel GJM, Eilander HJ, de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol. (2007) 118:597–605. 10.1016/j.clinph.2006.11.020
    1. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci USA. (2009) 106:1672–7. 10.1073/pnas.0809667106
    1. Engemann DA, Raimondo F, King J-R, Rohaut B, Louppe G, Faugeras F, et al. . Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. (2018) 141:3179–92. 10.1093/brain/awy251
    1. Sitt JD, King J-R, El Karoui I, Rohaut B, Faugeras F, Gramfort A, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. (2014) 137:2258–70. 10.1093/brain/awu141
    1. Chennu S, Annen J, Wannez S, Thibaut A, Chatelle C, Cassol H, et al. . Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. (2017) 140:2120–32. 10.1093/brain/awx163
    1. Stender J, Kupers R, Rodell A, Thibaut A, Chatelle C, Bruno M-A, et al. . Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab. (2015) 35:58–65. 10.1038/jcbfm.2014.169
    1. Stender J, Mortensen KN, Thibaut A, Darkner S, Laureys S, Gjedde A, et al. . The minimal energetic requirement of sustained awareness after brain injury. Curr Biol. (2016) 26:1494–9. 10.1016/j.cub.2016.04.024
    1. Annen J, Frasso G, Crone JS, Heine L, Di Perri C, Martial C, et al. . Regional brain volumetry and brain function in severely brain-injured patients. Ann Neurol. (2018) 83:842–53. 10.1002/ana.25214
    1. Demertzi A, Antonopoulos G, Heine L, Voss HU, Crone JS, de Los Angeles C, et al. . Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. (2015) 138:2619–31. 10.1093/brain/awv169
    1. Kirsch M, Guldenmund P, Ali Bahri M, Demertzi A, Baquero K, Heine L, et al. . Sedation of patients with disorders of consciousness during neuroimaging: effects on resting state functional brain connectivity. Anesth Analg. (2017) 124:588–98. 10.1213/ANE.0000000000001721
    1. Whyte J, Gosseries O, Chervoneva I, DiPasquale MC, Giacino J, Kalmar K, et al. . Predictors of short-term outcome in brain-injured patients with disorders of consciousness. Prog Brain Res. (2009) 177:63–72. 10.1016/S0079-6123(09)17706-3
    1. Stender J, Gosseries O, Bruno M-A, Charland-Verville V, Vanhaudenhuyse A, Demertzi A, et al. . Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet. (2014) 384:514–22. 10.1016/S0140-6736(14)60042-8
    1. Annen J, Heine L, Ziegler E, Frasso G, Bahri M, Di Perri C, et al. . Function–structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET. Hum Brain Mapp. (2016) 37:3707–20. 10.1002/hbm.23269
    1. Di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol. (2016) 15:830–42. 10.1016/S1474-4422(16)00111-3
    1. Fox M, Zhang D. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. (2009) 101:3270–83. 10.1152/jn.90777.2008
    1. Rutgeerts P, Robert L, Helmut M, Cornelis L, Gunnar O, Derek J, et al. Medical aspects of the persistent vegetative state. N Engl J Med. (1994) 330:1499–508. 10.1056/NEJM199405263302107
    1. van Erp WS, Lavrijsen JCM, Vos PE, Bor H, Laureys S, Koopmans RTCM. The vegetative state: prevalence, misdiagnosis, and treatment limitations. J Am Med Dir Assoc. (2015) 16:85e9-14. 10.1016/j.jamda.2014.10.014
    1. Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, et al. . Diagnostic accuracy of the vegetative and minimally conscious state : clinical consensus versus standardized neurobehavioral assessment. BMC Neurology. (2009) 9:35. 10.1186/1471-2377-9-35
    1. Schnakers C, Monti MM. Disorders of consciousness after severe brain injury. Curr Opin Neurol. (2017) 30:573–9. 10.1097/WCO.0000000000000495
    1. Ciurleo R, Bramanti P. Pharmacotherapy for disorders of consciousness : are ‘ awakening ’ drugs really a possibility? Drugs. (2013)73:1849–62. 10.1007/s40265-013-0138-8

Source: PubMed

3
Abonnieren