Protein and functional isoform levels and genetic variants of the BAFF and APRIL pathway components in systemic lupus erythematosus

Pilar Ortiz-Aljaro, Marco Antonio Montes-Cano, José-Raúl García-Lozano, Virginia Aquino, Rosario Carmona, Javier Perez-Florido, Francisco José García-Hernández, Joaquín Dopazo, María Francisca González-Escribano, Pilar Ortiz-Aljaro, Marco Antonio Montes-Cano, José-Raúl García-Lozano, Virginia Aquino, Rosario Carmona, Javier Perez-Florido, Francisco José García-Hernández, Joaquín Dopazo, María Francisca González-Escribano

Abstract

Systemic lupus erythematosus (SLE) is the prototype of an autoimmune disease. Belimumab, a monoclonal antibody targets BAFF, is the only biologic approved for SLE and active lupus nephritis. BAFF is a cytokine with a key-regulatory role in the B cell homeostasis, which acts by binding to three receptors: BAFF-R, TACI and BCMA. TACI and BCMA also bind APRIL. Many studies reported elevated soluble BAFF and APRIL levels in the sera of SLE patients, but other questions about the role of this system in the disease remain open. The study aimed to investigate the utility of the cytokine levels in serum and urine as biomarkers, the role of non-functional isoforms, and the association of gene variants with the disease. This case-control study includes a cohort (women, 18-60 years old) of 100 patients (48% with nephritis) and 100 healthy controls. We used ELISA assays to measure the cytokine concentrations in serum (sBAFF and sAPRIL) and urine (uBAFF and uAPRIL); TaqMan Gene Expression Assays to quantify the relative mRNA expression of ΔBAFF, βAPRIL, and εAPRIL, and next-generation sequencing to genotype the cytokine (TNFSF13 and TNFSF13B) and receptor (TNFRSF13B, TNFRSF17 and TNFRSF13C) genes. The statistical tests used were: Kruskal-Wallis (qualitative variables), the Spearman Rho coefficient (correlations), the Chi-square and SKAT (association of common and rare genetic variants, respectively). As expected, sBAFF and sAPRIL levels were higher in patients than in controls (p ≤ 0.001) but found differences between patient subgroups. sBAFF and sAPRIL significantly correlated only in patients with nephritis (rs = 0.67, p ≤ 0.001) and βAPRIL levels were lower in patients with nephritis (p = 0.04), and ΔBAFF levels were lower in patients with dsDNA antibodies (p = 0.04). Rare variants of TNFSF13 and TNFRSF13B and TNFSF13 p.Gly67Arg and TNFRSF13B p.Val220Ala were associated with SLE. Our study supports differences among SLE patient subgroups with diverse clinical features in the BAFF/APRIL pathway. In addition, it suggests the involvement of genetic variants in the susceptibility to the disease.

Trial registration: ClinicalTrials.gov NCT03919643.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Median levels of sBAFF and sAPRIL in patients and controls.
Figure 2
Figure 2
Median of the relative expression of non-functional isoforms of BAFF and APRIL. (a) Median of the relative expression εAPRIL/α+γ− in patients and controls. (b) Median of the relative expression βAPRIL/α+γ in patients with and without nephritis. (c) Median of the relative expression ΔBAFF/functional isoforms in patients with and without dsDNA antibodies.

References

    1. Pons-Estel GJ, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2017;13:799–814. doi: 10.1080/1744666X.2017.1327352.
    1. Tsokos GC. Systemic lupus erythematosus. N. Engl. J. Med. 2011;365:2110–2121. doi: 10.1056/NEJMra1100359.
    1. Bossen C, Schneider P. BAFF, APRIL and their receptors: Structure, function and signaling. Semin. Immunol. 2006;18:263–275. doi: 10.1016/j.smim.2006.04.006.
    1. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J. Exp. Med. 2003;198:937–945. doi: 10.1084/jem.20030789.
    1. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, et al. BLyS: Member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285:260–263. doi: 10.1126/science.285.5425.260.
    1. López-Fraga M, Fernández R, Albar JP, Hahne M. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO Rep. 2001;2:945–951. doi: 10.1093/embo-reports/kve198.
    1. Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J. Immunol. 2002;169:4314–4321. doi: 10.4049/jimmunol.169.8.4314.
    1. Dillon SR, Harder B, Lewis KB, Moore MD, Liu H, Bukowski TR, et al. B-lymphocyte stimulator/a proliferation-inducing ligand heterotrimers are elevated in the sera of patients with autoimmune disease and are neutralized by atacicept and B-cell maturation antigen-immunoglobulin. Arthritis Res. Ther. 2010;12:R48. doi: 10.1186/ar2959.
    1. Samy E, Wax S, Huard B, Hess H, Schneider P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int. Rev. Immunol. 2017;36:3–19. doi: 10.1080/08830185.2016.1276903.
    1. Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 2014;10:365–373. doi: 10.1038/nrrheum.2014.33.
    1. Phatak S, Chaurasia S, Mishra SK, Gupta R, Agrawal V, Aggarwal A, et al. Urinary B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL): Potential biomarkers of active lupus nephritis. Clin. Exp. Immunol. 2017;187:376–382. doi: 10.1111/cei.12894.
    1. Aguirre-Valencia D, Ríos-Serna LJ, Posso-Osorio I, Naranjo-Escobar J, López D, Bedoya-Joaqui V, et al. Expression of BAFF, APRIL, and cognate receptor genes in lupus nephritis and potential use as urinary biomarkers. J. Transl. Autoimmun. 2019;3:100027. doi: 10.1016/j.jtauto.2019.100027.
    1. Furuya T, Koga M, Hikami K, Kawasaki A, Tsuchiya N. Effects of APRIL (TNFSF13) polymorphisms and splicing isoforms on the secretion of soluble APRIL. Mod. Rheumatol. 2012;22:541–549. doi: 10.3109/s10165-011-0539-z.
    1. Trentin F, Zucch D, Signorini V, Elefante E, Bortoluzzi A, Tani C. One year in review 2021: Systemic lupus erythematosus. Clin. Exp. Rheumatol. 2021;39:231–241. doi: 10.55563/clinexprheumatol/7gzsxp.
    1. Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F. The BAFF/APRIL system: Emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 2013;24:203–215. doi: 10.1016/j.cytogfr.2013.04.003.
    1. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/art.1780400928.
    1. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–2686. doi: 10.1002/art.34473.
    1. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754.
    1. Bleda M, Tarraga J, de Maria A, Salavert F, Garcia-Alonso L, Celma M, et al. Cell Base, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources. Nucleic Acids Res. 2012;40:W609–W614. doi: 10.1093/nar/gks575.
    1. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 2011;89:82–93. doi: 10.1016/j.ajhg.2011.05.029.
    1. Petri MA, van Vollenhoven RF, Buyon J, Levy RA, Navarra SV, Cervera R, et al. Baseline predictors of systemic lupus erythematosus flares: Data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum. 2013;65:2143–2153. doi: 10.1002/art.37995.
    1. Treamtrakanpon W, Tantivitayakul P, Benjachat T, Somparn P, Kittikowit W, Eiam-ong S, et al. APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res. Ther. 2012;14:R252. doi: 10.1186/ar4095.
    1. Stohl W, Metyas S, Tan SM, Cheema GS, Oamar B, Roschke V, et al. Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2004;63:1096–1103. doi: 10.1136/ard.2003.018663.
    1. Morel J, Roubille C, Planelles L, Rocha C, Fernandez L, Lukas C, et al. Serum levels of tumour necrosis factor family members a proliferation-inducing ligand (APRIL) and B lymphocyte stimulator (BLyS) are inversely correlated in systemic lupus erythematosus. Ann. Rheum. Dis. 2009;68:997–1002. doi: 10.1136/ard.2008.090928.
    1. Chu VT, Enghard P, Schürer S, et al. Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 2009;60:2083–2093. doi: 10.1002/art.24628.
    1. Schuepbach-Mallepell S, Das D, Willen L, Vigolo M, Tardivel A, Lebon L, et al. Stoichiometry of heteromeric BAFF and APRIL cytokines dictates their receptor binding and signaling properties. J. Biol. Chem. 2015;290:16330–16342. doi: 10.1074/jbc.M115.661405.
    1. Shin W, Lee HT, Lim H, Lee SH, Son JY, Lee JU, et al. BAFF-neutralizing interaction of belimumab related to its therapeutic efficacy for treating systemic lupus erythematosus. Nat. Commun. 2018;9:1200–1211. doi: 10.1038/s41467-018-03620-2.
    1. Parodis I, Zickert A, Sundelin B, Axelsson M, Gerhardsson J, Svenungsson E, et al. Evaluation of B lymphocyte stimulator and a proliferation inducing ligand as candidate biomarkers in lupus nephritis based on clinical and histopathological outcome following induction therapy. Lupus Sci. Med. 2015;2:e000061. doi: 10.1136/lupus-2014-000061.
    1. Vincent FB, Kandane-Rathnayake R, Hoi AY, Slavin L, Godsell JD, Kitching AR, et al. Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus. 2018;27:2029–2040. doi: 10.1177/0961203318804885.
    1. Dhamija S, Menon MB. Non-coding transcript variants of protein-coding genes—What are they good for? RNA Biol. 2018;15:1025–1031.
    1. Koyama T, Tsukamoto H, Masumoto K, Himeji D, Hayashi K, Harada M, et al. A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus. Rheumatology (Oxford) 2003;42:980–985. doi: 10.1093/rheumatology/keg270.
    1. Kawasaki A, Tsuchiya N, Ohashi J, Murakami Y, Fukazawa T, Kusaoi M, et al. Role of APRIL (TNFSF13) polymorphisms in the susceptibility to systemic lupus erythematosus in Japanese. Rheumatology (Oxford) 2007;46:776–782. doi: 10.1093/rheumatology/kem019.
    1. Lee YH, Ota F, Kim-Howard X, Kaufman KM, Nath SK. APRIL polymorphism and systemic lupus erythematosus (SLE) susceptibility. Rheumatology (Oxford) 2007;46:1274–1276. doi: 10.1093/rheumatology/kem093.
    1. Wen L, Zhu C, Zhu Z, Yang C, Zheng X, Liu L, et al. Exome-wide association study identifies four novel loci for systemic lupus erythematosus in Han Chinese population. Ann. Rheum. Dis. 2018;77:417–422. doi: 10.1136/annrheumdis-2017-211823.
    1. Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun. 2002;3:424–429. doi: 10.1038/sj.gene.6363923.
    1. Marín-Rosales M, Cruz A, Salazar-Camarena DC, Santillán-López E, Espinoza-García N, Muñoz-Valle JF, et al. High BAFF expression associated with active disease in systemic lupus erythematosus and relationship with rs9514828C>T polymorphism in TNFSF13B gene. Clin. Exp. Med. 2019;19:183–190. doi: 10.1007/s10238-019-00549-8.
    1. Salzer U, Birmelin J, Bacchelli C, Witte T, Buchegger-Podbielski U, Buckridge S, et al. Sequence analysis of TNFRSF13b, encoding TACI, in patients with systemic lupus erythematosus. J. Clin. Immunol. 2007;27:372–377. doi: 10.1007/s10875-007-9094-y.
    1. Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K. Presence of four major haplotypes in human BCMA gene: Lack of association with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun. 2001;2:276–279. doi: 10.1038/sj.gene.6363770.
    1. Fenstad MH, Johnson MP, Roten LT, Aas PA, Forsmo S, Klepper K, et al. Genetic and molecular functional characterization of variants within TNFSF13B, a positional candidate preeclampsia susceptibility gene on 13q. PLoS One. 2010;5:e12993. doi: 10.1371/journal.pone.0012993.
    1. Jasek M, Bojarska-Junak A, Sobczyński M, Wagner M, Chocholska S, Roliński J, et al. Association of common variants of TNFSF13 and TNFRSF13B genes with CLL risk and clinical picture, as well as expression of their products-APRIL and TACI molecules. Cancers (Basel) 2020;12:2873. doi: 10.3390/cancers12102873.
    1. Inoue K, Mineharu Y, Inoue S, Kikuchi K, Ohishi H, Nozaki K, et al. Search on chromosome 17 centromere reveals TNFRSF13B as a susceptibility gene for intracranial aneurysm: A preliminary study. Circulation. 2006;113:2002–2010. doi: 10.1161/CIRCULATIONAHA.105.579326.
    1. Sazzini M, Zuntini R, Farjadian S, Quinti I, Ricci G, Romeo G, et al. An evolutionary approach to the medical implications of the tumor necrosis factor receptor superfamily member 13B (TNFRSF13B) gene. Genes Immun. 2009;10:566–578. doi: 10.1038/gene.2009.43.
    1. Salzer U, Bacchelli C, Buckridge S, Pan-Hammarström Q, Jennings S, Lougaris V, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113:1967–1976. doi: 10.1182/blood-2008-02-141937.
    1. Cascalho M, Platt JL. TNFRSF13B diversification fueled by B cell responses to environmental challenges—A hypothesis. Front. Immunol. 2021;12:634544. doi: 10.3389/fimmu.2021.634544.
    1. González-Serna D, Ortiz-Fernández L, Vargas S, García A, Raya E, Fernández-Gutierrez B, et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci. Rep. 2018;8:8195. doi: 10.1038/s41598-018-26573-4.

Source: PubMed

3
Abonnieren