Continuous theta-burst stimulation over the dorsolateral prefrontal cortex inhibits improvement on a working memory task

Teodóra Vékony, Viola Luca Németh, Adrienn Holczer, Krisztián Kocsis, Zsigmond Tamás Kincses, László Vécsei, Anita Must, Teodóra Vékony, Viola Luca Németh, Adrienn Holczer, Krisztián Kocsis, Zsigmond Tamás Kincses, László Vécsei, Anita Must

Abstract

Theta-burst stimulation (TBS) over the dorsolateral prefrontal cortex (DLPFC) may be more effective for modulating cortical excitability compared to standard repetitive transcranial magnetic stimulation. However, the impact of intermittent (iTBS) and continuous TBS (cTBS) on working memory (WM) is poorly studied. The aim of our study was to compare the effects of iTBS and cTBS on WM over the left and right DLPFC. iTBS, cTBS or sham stimulation was administered over the right and left hemisphere of fifty-one healthy human subjects. WM was assessed before and after TBS using the 1-back, 2-back, and 3-back tasks. We found classical practice effects in the iTBS and the sham group: WM performance improved following stimulation as measured by the discriminability index. However, this effect could not be observed in the cTBS group. We did not find any hemisphere-dependent effects, suggesting that the practice effect is not lateralized, and TBS affects WM performance in a comparable manner if administered either over the left or the right hemisphere. We propose that our findings represent a useful addition to the literature of TBS-induced effects on WM. Moreover, these results indicate the possibility of clarifying processes underlying WM performance changes by using non-invasive brain stimulation.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Pre- and post-stimulation n-back performance (d′ scores on 2-back and 3-back) when stimulating over the left (A) and right (B) DLPFC. Error bars indicate the standard error of mean. d′ scores improved in the iTBS and sham, but not in the cTBS group following stimulation.
Figure 2
Figure 2
Illustration of the n-back task. Level 1-back, 2-back, and 3-back were tested separately.

References

    1. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187–199. doi: 10.1016/j.neuron.2007.06.026.
    1. Brunoni AR, Vanderhasselt M-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cogn. 2014;86:1–9. doi: 10.1016/j.bandc.2014.01.008.
    1. Mottaghy FM, Döring T, Müller-Gärtner HW, Töpper R, Krause BJ. Bilateral parieto-frontal network for verbal working memory: An interference approach using repetitive transcranial magnetic stimulation (rTMS) Eur. J. Neurosci. 2002;16:1627–1632. doi: 10.1046/j.1460-9568.2002.02209.x.
    1. Lage C, Wiles K, Shergill SS, Tracy DK. A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition. J. Neural Transm. 2016;123:1479–1490. doi: 10.1007/s00702-016-1592-8.
    1. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–206. doi: 10.1016/j.neuron.2004.12.033.
    1. Lisman J, Buzsáki G. A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 2008;34:974–980. doi: 10.1093/schbul/sbn060.
    1. Niessing J, et al. Neuroscience: Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science (80-.). 2005;309:948–951. doi: 10.1126/science.1110948.
    1. Axmacher N, et al. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. 2010;107:3228–3233. doi: 10.1073/pnas.0911531107.
    1. Canolty RT, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science (80-.). 2006;313:1626–1628. doi: 10.1126/science.1128115.
    1. Lisman J. Working memory: The importance of theta and gamma oscillations. Curr. Biol. 2010;20:R490–R492. doi: 10.1016/j.cub.2010.04.011.
    1. Lisman JE, Jensen O. The theta-gamma neural code. Neuron. 2013;77:1002–1016. doi: 10.1016/j.neuron.2013.03.007.
    1. Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr. Opin. Neurobiol. 2010;20:245–257. doi: 10.1016/j.conb.2010.01.004.
    1. Di Lazzaro V, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J. Physiol. 2008;586:3871–3879. doi: 10.1113/jphysiol.2008.152736.
    1. Di Lazzaro V, et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J. Physiol. 2005;565:945–50. doi: 10.1113/jphysiol.2005.087288.
    1. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb. Cortex. 2013;23:1593–1605. doi: 10.1093/cercor/bhs147.
    1. Vallence AM, et al. Inter- and intra-subject variability of motor cortex plasticity following continuous theta-burst stimulation. Neuroscience. 2015;304:266–278. doi: 10.1016/j.neuroscience.2015.07.043.
    1. Jannati A, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin. Neurophysiol. 2017;128:2268–2278. doi: 10.1016/j.clinph.2017.08.023.
    1. Tse NY, et al. The effect of stimulation interval on plasticity following repeated blocks of intermittent theta burst stimulation. Sci. Rep. 2018;8:8526. doi: 10.1038/s41598-018-26791-w.
    1. Suppa A, et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9:323–335. doi: 10.1016/j.brs.2016.01.006.
    1. Demeter E. Enhancing cognition with theta burst stimulation. Curr. Behav. Neurosci. Reports. 2016;3:87–94. doi: 10.1007/s40473-016-0072-7.
    1. Viejo-Sobera R, et al. Impact of prefrontal theta burst stimulation on clinical neuropsychological tasks. Front. Neurosci. 2017;11:462. doi: 10.3389/fnins.2017.00462.
    1. Hoy Kate E., Bailey Neil, Michael Marco, Fitzgibbon Bernadette, Rogasch Nigel C., Saeki Takashi, Fitzgerald Paul B. Enhancement of Working Memory and Task-Related Oscillatory Activity Following Intermittent Theta Burst Stimulation in Healthy Controls. Cerebral Cortex. 2015;26(12):4563–4573. doi: 10.1093/cercor/bhv193.
    1. Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB. The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul. 2018;11:566–574. doi: 10.1016/j.brs.2018.01.002.
    1. Chung Sung Wook, Rogasch Nigel C., Hoy Kate E., Sullivan Caley M., Cash Robin F. H., Fitzgerald Paul B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Human Brain Mapping. 2017;39(2):783–802. doi: 10.1002/hbm.23882.
    1. Schicktanz N, et al. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans. PLoS One. 2015;10:e0120640. doi: 10.1371/journal.pone.0120640.
    1. Lee TG, D’Esposito M. The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. J. Neurosci. 2012;32:15458–15466. doi: 10.1523/JNEUROSCI.0627-12.2012.
    1. Chung SW, et al. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin. Neurophysiol. 2017;128:1117–1126. doi: 10.1016/j.clinph.2017.04.005.
    1. Calero MD, Navarro E. Relationship between plasticity, mild cognitive impairment and cognitive decline. Arch. Clin. Neuropsychol. 2004;19:653–660. doi: 10.1016/j.acn.2003.08.008.
    1. Duff K, et al. Practice effects in the prediction of long-term cognitive outcome in three patient samples: A novel prognostic index. Arch. Clin. Neuropsychol. 2007;22:15–24. doi: 10.1016/j.acn.2006.08.013.
    1. Duff K, Callister C, Dennett K, Tometich D. Practice effects: A unique cognitive variable. Clin. Neuropsychol. 2012;26:1117–1127. doi: 10.1080/13854046.2012.722685.
    1. Tupak SV, et al. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation. Hum. Brain Mapp. 2013;34:150–157. doi: 10.1002/hbm.21421.
    1. Ko JH, et al. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task - A TMS-[11C]raclopride PET study. Eur. J. Neurosci. 2008;28:2147–2155. doi: 10.1111/j.1460-9568.2008.06501.x.
    1. Mull BR, Seyal M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clin. Neurophysiol. 2001;112:1672–1675. doi: 10.1016/S1388-2457(01)00606-X.
    1. Shields J, Mock J, Devier D, Foundas A. Unilateral repetitive transcranial magnetic stimulation differentially affects younger and older adults completing a verbal working memory task. J. Neurol. Sci. 2017;384:15–20. doi: 10.1016/j.jns.2017.10.021.
    1. Mottaghy FM, et al. Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci. Lett. 2000;280:167–170. doi: 10.1016/S0304-3940(00)00798-9.
    1. Preston G, Anderson E, Silva C, Goldberg T, Wassermann EM. Effects of 10 Hz rTMS on the neural efficiency of working memory. J. Cogn. Neurosci. 2010;22:447–456. doi: 10.1162/jocn.2009.21209.
    1. Hamidi M, Tononi G, Postle BR. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia. 2009;47:295–302. doi: 10.1016/j.neuropsychologia.2008.08.026.
    1. Hulst HE, et al. RTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2017;88:386–394. doi: 10.1136/jnnp-2016-314224.
    1. Sandrini M, Rossini PM, Miniussi C. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia. 2008;46:2056–2063. doi: 10.1016/j.neuropsychologia.2008.02.003.
    1. Fried PJ, Rushmore RJ, Moss MB, Valero-Cabré A, Pascual-Leone A. Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. Eur. J. Neurosci. 2014;39:1973–1981. doi: 10.1111/ejn.12584.
    1. Weigand A, et al. State-dependent effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory. Brain Stimul. 2013;6:905–912. doi: 10.1016/j.brs.2013.06.004.
    1. Weigand A, et al. Lateralized effects of prefrontal repetitive transcranial magnetic stimulation on emotional working memory. Exp. Brain Res. 2013;227:43–52. doi: 10.1007/s00221-013-3483-7.
    1. Wager TD, Smith EE. Neuroimaging studies of working memory: A meta-analysis. Cogn. Affect. Behav. Neurosci. 2003;3:255–274. doi: 10.3758/CABN.3.4.255.
    1. Calamia M, Markon K, Tranel D. Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. Clin. Neuropsychol. 2012;26:543–570. doi: 10.1080/13854046.2012.680913.
    1. Rossini PM, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015;126:1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Lowe CJ, Manocchio F, Safati AB, Hall PA. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia. 2018;111:344–359. doi: 10.1016/j.neuropsychologia.2018.02.004.
    1. Duff K, et al. Practice effects predict cognitive outcome in amnestic mild cognitive impairment. Am. J. Geriatr. Psychiatry. 2011;19:932–939. doi: 10.1097/JGP.0b013e318209dd3a.
    1. Ivnik RJ, et al. Diagnostic accuracy of four approaches to interpreting neuropsychological test data. Neuropsychology. 2000;14:163–177. doi: 10.1037/0894-4105.14.2.163.
    1. Weintraub S, Wicklund AH, Salmon DP. The neuropsychological profile of Alzheimer disease. Cold Spring Harb. Perspect.Med. 2012;2:a006171. doi: 10.1101/cshperspect.a006171.
    1. Demeter E, Mirdamadi JL, Meehan SK, Taylor SF. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory. Cogn. Affect. Behav. Neurosci. 2016;16:724–735. doi: 10.3758/s13415-016-0426-3.
    1. Blumenfeld RS, Lee TG, D’Esposito M. The effects of lateral prefrontal transcranial magnetic stimulation on item memory encoding. Neuropsychologia. 2014;53:197–202. doi: 10.1016/j.neuropsychologia.2013.11.021.
    1. Reeve CL, Lam H. The relation between practice effects, test-taker characteristics and degree of g-saturation. Int. J. Test. 2007;7:225–242. doi: 10.1080/15305050701193595.
    1. Dutilh G, Krypotos AM, Wagenmakers EJ. Task-related versus stimulus-specific practice: A diffusion model account. Exp. Psychol. 2011;58:434–442. doi: 10.1027/1618-3169/a000111.
    1. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002 doi: 10.1162/089892902317361886.
    1. Grimm S, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol. Psychiatry. 2008;63:369–376. doi: 10.1016/j.biopsych.2007.05.033.
    1. Verbruggen F, Aron AR, Stevens MA, Chambers CD. Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc. Natl. Acad. Sci. 2010;107:13966–13971. doi: 10.1073/pnas.1001957107.
    1. Dambacher F, et al. The role of right prefrontal and medial cortex in response inhibition: interfering with action restraint and action cancellation using transcranial magnetic brain stimulation. J. Cogn. Neurosci. 2014;26:1775–1784. doi: 10.1162/jocn_a_00595.
    1. Drummond NM, Cressman EK, Carlsen AN. Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task. Neuropsychologia. 2017;99:360–367. doi: 10.1016/j.neuropsychologia.2017.04.007.
    1. Chen R, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 1998;80:2870–81. doi: 10.1152/jn.1998.80.6.2870.
    1. Gevins A, Cutillo B. Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr. Clin. Neurophysiol. 1993;87:128–143. doi: 10.1016/0013-4694(93)90119-G.
    1. Peirce JW. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods. 2007;162:8–13. doi: 10.1016/j.jneumeth.2006.11.017.
    1. Kaminski JA, Korb FM, Villringer A, Ott DVM. Transcranial magnetic stimulation intensities in cognitive paradigms. PLoS One. 2011;6:e24836. doi: 10.1371/journal.pone.0024836.
    1. Stanislaw H, Todorov N. Calculation of signal detection theory measures. Behav. Res. Methods, Instruments, {&} Comput. 1999;31:137–149. doi: 10.3758/BF03207704.
    1. Ulrich Rolf, Miller Jeff. Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General. 1994;123(1):34–80. doi: 10.1037/0096-3445.123.1.34.
    1. Haatveit BC, et al. The validity of d prime as a working memory index: results from the ‘Bergen n-back task’. J. Clin. Exp. Neuropsychol. 2010;32:871–880. doi: 10.1080/13803391003596421.
    1. Dienes Z. Using Bayes to get the most out of non-significant results. Front. Psychol. 2014;5:781. doi: 10.3389/fpsyg.2014.00781.
    1. Wagenmakers E, Wetzels R, Borsboom D, van der Maas HLJ. Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011) J. Pers. Soc. Psychol. 2011;100:426–432. doi: 10.1037/a0022790.
    1. JASP Team. JASP (Version 0.8.3.1) [Computer software] (2017).

Source: PubMed

3
Abonnieren