Laboratory diagnosis of emerging human coronavirus infections - the state of the art

Michael J Loeffelholz, Yi-Wei Tang, Michael J Loeffelholz, Yi-Wei Tang

Abstract

The three unprecedented outbreaks of emerging human coronavirus (HCoV) infections at the beginning of the twenty-first century have highlighted the necessity for readily available, accurate and fast diagnostic testing methods. The laboratory diagnostic methods for human coronavirus infections have evolved substantially, with the development of novel assays as well as the availability of updated tests for emerging ones. Newer laboratory methods are fast, highly sensitive and specific, and are gradually replacing the conventional gold standards. This presentation reviews the current laboratory methods available for testing coronaviruses by focusing on the coronavirus disease 2019 (COVID-19) outbreak going on in Wuhan. Viral pneumonias typically do not result in the production of purulent sputum. Thus, a nasopharyngeal swab is usually the collection method used to obtain a specimen for testing. Nasopharyngeal specimens may miss some infections; a deeper specimen may need to be obtained by bronchoscopy. Alternatively, repeated testing can be used because over time, the likelihood of the SARS-CoV-2 being present in the nasopharynx increases. Several integrated, random-access, point-of-care molecular devices are currently under development for fast and accurate diagnosis of SARS-CoV-2 infections. These assays are simple, fast and safe and can be used in the local hospitals and clinics bearing the burden of identifying and treating patients.

Keywords: COVID-19; Human coronavirus; POCT; SARS-CoV-2; real-time PCR; serology.

Figures

Figure 1.
Figure 1.
Evolutions in molecular testing procedures. The point-of-care test (POCT) devices incorporate nucleic acid extraction, amplification and detection together into an integrated and sealed cartridge making it simple, rapid and safe. During end-point PCR, DNA is detected or measured at the completion of PCR amplification, requiring post-PCR processing. Real-time PCR is a closed-tube system in which DNA is detected or measured during the exponential phase of amplification.

References

    1. Su S, Wong G, Shi W, et al. . Epidemiology, genetic recombination, and Pathogenesis of coronaviruses. Trends Microbiol 2016;24(6):490–502. doi: 10.1016/j.tim.2016.03.003
    1. Ksiazek TG, Erdman D, Goldsmith CS, et al. . A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966.
    1. Peiris JS, Lai ST, Poon LL, et al. . Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–1325. doi: 10.1016/S0140-6736(03)13077-2
    1. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, et al. . Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13(9):752–761. doi: 10.1016/S1473-3099(13)70204-4
    1. Drosten C, Seilmaier M, Corman VM, et al. . Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13(9):745–751. doi: 10.1016/S1473-3099(13)70154-3
    1. Zaki AM, van Boheemen S, Bestebroer TM, et al. . Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–1820.
    1. Lu H, Stratton CW, Tang YW.. Outbreak of pneumonia of unknown Etiology in Wuhan China: the Mystery and the Miracle. J Med Virol. 2020;92(4):401–402. doi: 10.1002/jmv.25678
    1. Zhu N, Zhang D, Wang W, et al. . A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017
    1. Anonymous . The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020. Epub ahead of print.
    1. Lu R, Zhao X, Li J, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;30(20):30251–30258.
    1. Zhou P, Yang XL, Wang XG, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
    1. Gaunt ER, Hardie A, Claas EC, et al. . Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48(8):2940–2947. doi: 10.1128/JCM.00636-10
    1. Wong G, Liu W, Liu Y, et al. . MERS, SARS, and Ebola: The role of super-spreaders in infectious disease. Cell Host Microbe. 2015;18(4):398–401. doi: 10.1016/j.chom.2015.09.013
    1. Sun J, He W, Wang L, et al. . COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020. Epub ahead of print.
    1. Li Q, Guan X, Wu P, et al. . Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020. Epub ahead of print.
    1. Huang C, Wang Y, Li X, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;24(20):30183–30185.
    1. Wang W, Tang J, Wei F.. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441–447. doi: 10.1002/jmv.25689
    1. Yang X, Yu Y, Xu J, et al. . Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020. Epub ahead of print.
    1. Tian S, Hu N, Lou J, et al. . Characteristics of COVID-19 infection in Beijing. J Infect. 2020;27(20):30101–30108.
    1. Holshue ML, DeBolt C, Lindquist S, et al. . First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
    1. Shen K, Yang Y, Wang T, et al. . Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020. Epub ahead of print.
    1. Guan WJ, Ni ZY, Hu Y, et al. . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. Epub ahead of print.
    1. Charlton CL, Babady E, Ginocchio CC, et al. . Practical guidance for clinical microbiology laboratories: viruses causing acute respiratory tract infections. Clin Microbiol Rev. 2019;32(1). doi: 10.1128/CMR.00042-18
    1. Falsey AR, Formica MA, Walsh EE.. Simple method for combining sputum and nasal samples for virus detection by reverse transcriptase PCR. J Clin Microbiol. 2012;50(8):2835. doi: 10.1128/JCM.01473-12
    1. Wang W, Xu Y, Gao R, et al. . Detection of SARS-CoV-2 in different types of clinical specimens. Jama. 2020. Epub ahead of print.
    1. Cheng PK, Wong DA, Tong LK, et al. . Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363(9422):1699–1700. doi: 10.1016/S0140-6736(04)16255-7
    1. Al-Abdely HM, Midgley CM, Alkhamis AM, et al. . Middle East respiratory syndrome coronavirus infection dynamics and antibody Responses among clinically Diverse patients, Saudi Arabia. Emerg Infect Dis. 2019;25(4):753–766.
    1. Poissy J, Goffard A, Parmentier-Decrucq E, et al. . Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol. 2014;61(2):275–278. doi: 10.1016/j.jcv.2014.07.002
    1. Xu D, Zhang Z, Jin L, et al. . Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur J Clin Microbiol Infect Dis. 2005;24(3):165–171. doi: 10.1007/s10096-005-1299-5
    1. To KK, Tsang OT, Chik-Yan Yip C, et al. . Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020. Epub ahead of print.
    1. Hamre D, Kindig DA, Mann J.. Growth and intracellular development of a new respiratory virus. J Virol. 1967;1(4):810–816. doi: 10.1128/JVI.1.4.810-816.1967
    1. Tyrrell DAJ, Bynoe ML.. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J. 1965;1(5448):1467–1470. doi: 10.1136/bmj.1.5448.1467
    1. Chen Y, Chan KH, Hong C, et al. . A highly specific rapid antigen detection assay for on-site diagnosis of MERS. J Infect. 2016;73(1):82–84. doi:10.1016/j.jinf.2016.1004.1014 doi: 10.1016/j.jinf.2016.04.014
    1. Lau SK, Woo PC, Wong BH, et al. . Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in SARS patients by enzyme-linked immunosorbent assay. J Clin Microbiol. 2004;42(7):2884–2889. doi: 10.1128/JCM.42.7.2884-2889.2004
    1. Sastre P, Dijkman R, Camunas A, et al. . Differentiation between human coronaviruses NL63 and 229E using a novel double-antibody sandwich enzyme-linked immunosorbent assay based on specific monoclonal antibodies. Clin Vaccine Immunol. 2011;18(1):113–118. doi: 10.1128/CVI.00355-10
    1. Liu IJ, Chen PJ, Yeh SH, et al. . Immunofluorescence assay for detection of the nucleocapsid antigen of the severe acute respiratory syndrome (SARS)-associated coronavirus in cells derived from throat wash samples of patients with SARS. J Clin Microbiol. 2005;43(5):2444–2448. doi: 10.1128/JCM.43.5.2444-2448.2005
    1. Sizun J, Arbour N, Talbot PJ.. Comparison of immunofluorescence with monoclonal antibodies and RT-PCR for the detection of human coronaviruses 229E and OC43 in cell culture. J Virol Methods. 1998;72(2):145–152. doi: 10.1016/S0166-0934(98)00013-5
    1. Li W, Liu L, Chen L, et al. . Evaluation of a commercial colloidal gold assay for detection of influenza A and B virus in children's respiratory specimens. Fetal Pediatr Pathol. 2019;15:1–6. doi: 10.1080/15513815.2019.1639088
    1. Bruning AHL, Aatola H, Toivola H, et al. . Rapid detection and monitoring of human coronavirus infections. New Microbes New Infect. 2018;24:52–55. doi:10.1016/j.nmni.2018.1004.1007 doi: 10.1016/j.nmni.2018.04.007
    1. Chan CM, Tse H, Wong SS, et al. . Examination of seroprevalence of coronavirus HKU1 infection with S protein-based ELISA and neutralization assay against viral spike pseudotyped virus. J Clin Virol. 2009;45(1):54–60. doi:10.1016/j.jcv.2009.1002.1011 doi: 10.1016/j.jcv.2009.02.011
    1. Shao X, Guo X, Esper F, et al. . Seroepidemiology of group I human coronaviruses in children. J Clin Virol. 2007;40(3):207–213. doi: 10.1016/j.jcv.2007.08.007
    1. Zhang W, Du RH, Li B, et al. . Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386–389. doi: 10.1080/22221751.2020.1729071
    1. Briese T, Mishra N, Jain K, et al. . Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. mBio. 2014;5(3):e01146–e01114. doi: 10.1128/mBio.01146-14
    1. Chen L, Liu W, Zhang Q, et al. . RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. 2020;9(1):313–319. doi: 10.1080/22221751.2020.1725399
    1. Wu F, Zhao S, Yu B, et al. . A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3
    1. Ren LL, Wang YM, Wu ZQ, et al. . Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J. 2020. Epub ahead of print.
    1. Wu X, Cai Y, Huang X, et al. . Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerg Infect Dis. 2020;26(6). doi: 10.3201/eid2606.200299
    1. Das S, Dunbar S, Tang YW.. Laboratory diagnosis of respiratory tract infections in children - the State of the Art. Front Microbiol. 2018;9:2478. doi:10.3389/fmicb.2018.02478.
    1. Mahony JB, Richardson S.. Molecular diagnosis of severe acute respiratory syndrome: the state of the art. J Mol Diagn. 2005;7(5):551–559. doi: 10.1016/S1525-1578(10)60587-9
    1. Wu W, Tang YW.. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med. 2009;29(4):673–693. doi: 10.1016/j.cll.2009.07.005
    1. Yan Y, Zhang S, Tang YW.. Molecular assays for the detection and characterization of respiratory viruses. Semin Respir Crit Care Med. 2011;32(4):512–526.
    1. Zlateva KT, Coenjaerts FE, Crusio KM, et al. . No novel coronaviruses identified in a large collection of human nasopharyngeal specimens using family-wide CODEHOP-based primers. Arch Virol. 2013;158(1):251–255. doi: 10.1007/s00705-012-1487-4
    1. Kuypers J, Martin ET, Heugel J, et al. . Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics. 2007;119(1):e70–e76. doi:10.1542/peds.2006-1406.
    1. Woo PC, Lau SK, Chu CM, et al. . Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–895. doi: 10.1128/JVI.79.2.884-895.2005
    1. Babady NE, England MR, Jurcic Smith KL, et al. . Multicenter evaluation of the ePlex respiratory pathogen panel for the detection of viral and bacterial respiratory tract pathogens in nasopharyngeal swabs. J Clin Microbiol. 2018;56(2). doi: 10.1128/JCM.01658-17
    1. Babady NE, Mead P, Stiles J, et al. . Comparison of the Luminex xTAG RVP fast assay and the Idaho Technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital. J Clin Microbiol. 2012;50(7):2282–2288. doi: 10.1128/JCM.06186-11
    1. Tang YW, Gonsalves S, Sun JY, et al. . Clinical evaluation of the Luminex NxTAG respiratory pathogen panel. J Clin Microbiol. 2016;54(7):1912–1914. doi: 10.1128/JCM.00482-16
    1. Liu R, Han H, Liu F, et al. . Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020. Epub ahead of print.
    1. Rothe C, Schunk M, Sothmann P, et al. . Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970–971. doi: 10.1056/NEJMc2001468
    1. Corman VM, Landt O, Kaiser M, et al. . Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3). doi:10.2807/1560-7917.ES.2020.2825.2803.2000045 doi: 10.2807/1560-7917.ES.2020.25.3.2000045
    1. Chan JF, Kok KH, Zhu Z, et al. . Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236. doi: 10.1080/22221751.2020.1719902
    1. Raftery P, Condell O, Wasunna C, et al. . Establishing Ebola virus disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: impact on outbreak response, case management and laboratory systems strengthening. PLoS Negl Trop Dis. 2018;12(1):e0006135. doi: 10.1371/journal.pntd.0006135
    1. Kozel TR, Burnham-Marusich AR.. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017;55(8):2313–2320.doi: 10.1128/JCM.00476-17
    1. Nie S, Roth RB, Stiles J, et al. . Evaluation of Alere i influenza A&B for rapid detection of influenza viruses A and B. J Clin Microbiol. 2014;52(9):3339–3344. doi: 10.1128/JCM.01132-14
    1. Wang H, Deng J, Tang YW.. Profile of the Alere i influenza A & B assay: a pioneering molecular point-of-care test. Expert Rev Mol Diagn. 2018;18(5):403–409. doi: 10.1080/14737159.2018.1466703
    1. Ling L, Kaplan SE, Lopez JC, et al. . Parallel validation of three molecular devices for simultaneous detection and identification of influenza A and B and respiratory syncytial viruses. J Clin Microbiol. 2018;56(3). doi: 10.1128/JCM.01691-17
    1. Beal SG, Posa M, Gaffar M, et al. . Performance and impact of a CLIA-waived, point-of-care respiratory PCR Panel in a pediatric clinic. Pediatr Infect Dis J. 2020;39(3):188–191.
    1. van der Hoek L, Pyrc K, Jebbink MF, et al. . Identification of a new human coronavirus. Nat Med. 2004;10(4):368–373.
    1. Chan JF, Choi GK, Tsang AK, et al. . Development and evaluation of novel real-time reverse transcription-PCR assays with Locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses. J Clin Microbiol. 2015;53(8):2722–2726. doi: 10.1128/JCM.01224-15
    1. Dare RK, Fry AM, Chittaganpitch M, et al. . Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis. 2007;196(9):1321–1328.

Source: PubMed

3
Abonnieren