Phase II trial of sorafenib in combination with carboplatin and paclitaxel in patients with metastatic uveal melanoma: SWOG S0512

Shailender Bhatia, James Moon, Kim A Margolin, Jeffrey S Weber, Christopher D Lao, Megan Othus, Ana M Aparicio, Antoni Ribas, Vernon K Sondak, Shailender Bhatia, James Moon, Kim A Margolin, Jeffrey S Weber, Christopher D Lao, Megan Othus, Ana M Aparicio, Antoni Ribas, Vernon K Sondak

Abstract

Background: Sorafenib, a multikinase inhibitor of cell proliferation and angiogenesis, inhibits the mitogen-activated protein kinase pathway that is activated in most uveal melanoma tumors. This phase II study was conducted by the SWOG cooperative group to evaluate the efficacy of sorafenib in combination with carboplatin and paclitaxel (CP) in metastatic uveal melanoma.

Methods: Twenty-five patients with stage IV uveal melanoma who had received 0-1 prior systemic therapy were enrolled. Treatment included up to 6 cycles of carboplatin (AUC = 6) and paclitaxel (225 mg/m(2)) administered IV on day 1 plus sorafenib (400 mg PO twice daily), followed by sorafenib monotherapy until disease progression. The primary endpoint was objective response rate (ORR); a two-stage design was used with the study to be terminated if no confirmed responses were observed in the first 20 evaluable patients. Secondary efficacy endpoints included progression-free survival (PFS) and overall survival (OS).

Results: No confirmed objective responses occurred among the 24 evaluable patients (ORR = 0% [95% CI: 0-14%]) and the study was terminated at the first stage. Minor responses (tumor regression less than 30%) were seen in eleven of 24 (45%) patients. The median PFS was 4 months [95% CI: 1-6 months] and the 6-month PFS was 29% [95% CI: 13%-48%]. The median OS was 11 months [95% CI: 7-14 months].

Conclusion: In this study, the overall efficacy of CP plus sorafenib in metastatic uveal melanoma did not warrant further clinical testing when assessed by ORR, although minor tumor responses and stable disease were observed in some patients.

Trial registration: ClinicalTrials.govNCT00329641.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Best tumor response (waterfall plot)…
Figure 1. Best tumor response (waterfall plot) in evaluable patients (n = 24).
The bars on each plot represent the largest decrease under baseline of the sum of longest diameters of all target measurable lesions, or if no decrease was observed, the smallest increase in the sum of longest diameters of target measurable lesions. Patients whose best response was progression due to new lesions, death (due to disease), or clear worsening of non-measurable disease are represented by a bar showing a 100% increase. In addition, patients whose best response could not be determined due to inadequate assessment are represented on the far left side of the plot as a solid bar showing 100% increase.
Figure 2. Kaplan-Meier curve for progression-free survival…
Figure 2. Kaplan-Meier curve for progression-free survival in evaluable patients (n = 24).
Figure 3. Kaplan-Meier curve for overall survival…
Figure 3. Kaplan-Meier curve for overall survival in evaluable patients (n = 24).

References

    1. Chang AE, Karnell LH, Menck HR (1998) The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 83: 1664–1678.
    1. McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, et al. (2005) Incidence of noncutaneous melanomas in the U.S. Cancer 103: 1000–1007.
    1. Singh AD, Turell ME, Topham AK (2011) Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118: 1881–1885.
    1. Kujala E, Makitie T, Kivela T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 44: 4651–4659.
    1. Diener-West M, Reynolds SM, Agugliaro DJ, Caldwell R, Cumming K, et al. (2005) Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol 123: 1639–1643.
    1. Einhorn LH, Burgess MA, Gottlieb JA (1974) Metastatic patterns of choroidal melanoma. Cancer 34: 1001–1004.
    1. Rajpal S, Moore R, Karakousis CP (1983) Survival in metastatic ocular melanoma. Cancer 52: 334–336.
    1. Sato T (2010) Locoregional management of hepatic metastasis from primary uveal melanoma. Semin Oncol 37: 127–138.
    1. Pingpank JF, Hughes MS, Faries MB, Zager JS, Alexander HR, et al. (2010) A phase III random assignment trial comparing percutaneous hepatic perfusion with melphalan (PHP-mel) to standard of care for patients with hepatic metastases from metastatic ocular or cutaneous melanoma. J Clin Oncol 28: 18s (suppl; abstr LBA8512)..
    1. Augsburger JJ, Correa ZM, Shaikh AH (2009) Effectiveness of treatments for metastatic uveal melanoma. Am J Ophthalmol 148: 119–127.
    1. Patel M, Smyth E, Chapman PB, Wolchok JD, Schwartz GK, et al. (2011) Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin Cancer Res 17: 2087–2100.
    1. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, et al. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109.
    1. Peyssonnaux C, Eychène A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biology of the cell/under the auspices of the European Cell Biology Organization 93: 53–62.
    1. Weber A, Hengge UR, Urbanik D, Markwart A, Mirmohammadsaegh A, et al. (2003) Absence of mutations of the BRAF gene and constitutive activation of extracellular-regulated kinase in malignant melanomas of the uvea. Lab Invest 83: 1771–1776.
    1. Heim M, Sharifi M, Hilger RA, Scheulen ME, Seeber S, et al. (2003) Antitumor effect and potentiation or reduction in cytotoxic drug activity in human colon carcinoma cells by the Raf kinase inhibitor (RKI) BAY 43-9006. Int J Clin Pharmacol Ther 41: 616–617.
    1. Carter CA, Chen C, Brink C, Vincent P, Maxuitenko YY, et al. (2007) Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol 59: 183–195.
    1. Amaravadi RK, Schuchter LM, McDermott DF, Kramer A, Giles L, et al. (2009) Phase II Trial of Temozolomide and Sorafenib in Advanced Melanoma Patients with or without Brain Metastases. Clin Cancer Res 15: 7711–7718.
    1. Kupsch P, Henning BF, Passarge K, Richly H, Wiesemann K, et al. (2005) Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer 5: 188–196.
    1. Richly H, Henning BF, Kupsch P, Passarge K, Grubert M, et al. (2006) Results of a Phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol 17: 866–873.
    1. Richly H, Kupsch P, Passage K, Grubert M, Hilger RA, et al. (2004) Results of a phase I trial of BAY 43-9006 in combination with doxorubicin in patients with primary hepatic cancer. Int J Clin Pharmacol Ther 42: 650–651.
    1. Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, et al. (2006) Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 12: 144–151.
    1. Flaherty K, Brose M, Schuchter L, et al. (2006) Sorafenib combined with carboplatin and paclitaxel for metastatic melanoma: Progression-free survival and response versus b-raf status. Ann Oncol 17: iii33 (abstr)..
    1. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, et al. (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27: 2823–2830.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–216.
    1. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41.
    1. Green SJ, Dahlberg S (1992) Planned versus attained design in phase II clinical trials. Stat Med 11: 853–862.
    1. Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481.
    1. Brookmeyer R, Crowley J (1982) A confidence interval for the median survival time. Biometrics 38: 29–41.
    1. Korn EL, Liu PY, Lee SJ, Chapman JAW, Niedzwiecki D, et al. (2008) Meta-Analysis of Phase II Cooperative Group Trials in Metastatic Stage IV Melanoma to Determine Progression-Free and Overall Survival Benchmarks for Future Phase II Trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26: 527–534.
    1. Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, et al. (2005) Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer 92: 2032–2038.
    1. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, et al. (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457: 599–603.
    1. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, et al. (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363: 2191–2199.
    1. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464: 427–430.
    1. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, et al. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. New England Journal of Medicine 363: 809–819.
    1. Missotten GS, Notting IC, Schlingemann RO, Zijlmans HJ, Lau C, et al. (2006) Vascular endothelial growth factor a in eyes with uveal melanoma. Arch Ophthalmol 124: 1428–1434.
    1. Stitt AW, Simpson DA, Boocock C, Gardiner TA, Murphy GM, et al. (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors is regulated in eyes with intra-ocular tumours. J Pathol 186: 306–312.
    1. Yang H, Jager MJ, Grossniklaus HE (2010) Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci 51: 2835–2842.
    1. Guenterberg KD, Grignol VP, Relekar KV, Varker KA, Chen HX, et al. (2011) A pilot study of bevacizumab and interferon-alpha2b in ocular melanoma. Am J Clin Oncol 34: 87–91.
    1. Bedikian AY (2006) Metastatic uveal melanoma therapy: current options. Int Ophthalmol Clin 46: 151–166.
    1. Myatt N, Cree IA, Kurbacher CM, Foss AJ, Hungerford JL, et al. (1997) The ex vivo chemosensitivity profile of choroidal melanoma. Anticancer Drugs 8: 756–762.
    1. Neale MH, Myatt N, Cree IA, Kurbacher CM, Foss AJ, et al. (1999) Combination chemotherapy for choroidal melanoma: ex vivo sensitivity to treosulfan with gemcitabine or cytosine arabinoside. Br J Cancer 79: 1487–1493.
    1. Neale MH, Myatt NE, Khoury GG, Weaver P, Lamont A, et al. (2001) Comparison of the ex vivo chemosensitivity of uveal and cutaneous melanoma. Melanoma Res 11: 601–609.
    1. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–134.

Source: PubMed

3
Abonnieren