The KHENERGY Study: Safety and Efficacy of KH176 in Mitochondrial m.3243A>G Spectrum Disorders

Mirian C H Janssen, Saskia Koene, Paul de Laat, Pleun Hemelaar, Peter Pickkers, Edwin Spaans, Rypko Beukema, Julien Beyrath, Jan Groothuis, Chris Verhaak, Jan Smeitink, Mirian C H Janssen, Saskia Koene, Paul de Laat, Pleun Hemelaar, Peter Pickkers, Edwin Spaans, Rypko Beukema, Julien Beyrath, Jan Groothuis, Chris Verhaak, Jan Smeitink

Abstract

KH176 is a potent intracellular reduction-oxidation-modulating compound developed to treat mitochondrial disease. We studied tolerability, safety, pharmacokinetics, pharmacodynamics, and efficacy of twice daily oral 100 mg KH176 for 28 days in a double-blind, randomized, placebo-controlled, two-way crossover phase IIA study in 18 adult m.3243A>G patients without cardiovascular involvement. Efficacy parameters included clinical and functional outcome measures and biomarkers. The trial was registered within ClinicalTrials.gov (NCT02909400), the European Clinical Trials Database (2016-001696-79), and ISRCTN (43372293) (The KHENERGY study). Twice daily oral 100 mg KH176 was well tolerated and appeared safe. No serious treatment-emergent adverse events were reported. No significant improvements in gait parameters or other outcome measures were obtained, except for a positive effect on alertness and mood, although a coincidence due to multiplicity cannot be ignored. The results of the study provide first data on safety and efficacy of KH176 in patients with mitochondrial disease and will be instrumental in designing future clinical trials.

Conflict of interest statement

E.S. is the chief marketing officer, J.B. is the chief operating officer, and J.S. is the chief executive officer of Khondrion BV. All other authors report no disclosures.

© 2018 American Society for Clinical Pharmacology and Therapeutics.

Figures

Figure 1
Figure 1
Trial profile. AV, atrioventricular.
Figure 2
Figure 2
ECG, electrocardiogram; max, maximum; min, minimum; QTcf, Change in Fridericia‐corrected QT during the KH176 treatment period.
Figure 3
Figure 3
Mean (SD) plasma concentration–time profiles of KH176 and its metabolite KH176 m on day 21 after administration of 100 mg KH176 twice daily for 28 days on linear and semilogarithmic scales.

References

    1. Gorman, G.S. et al Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759 (2015).
    1. Calvo, S.E. , Clauser, K.R. & Mootha, V.K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).
    1. Pagliarini, D.J. et al A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).
    1. Pfeffer, G. , Majamaa, K. , Turnbull, D.M. , Thorburn, D. & Chinnery, P.F. Treatment for mitochondrial disorders. Cochrane Database Syst. Rev. (4), CD004426 (2012).
    1. de Laat, P. , Koene, S. , van den Heuvel, L.P. , Rodenburg, R.J. , Janssen, M.C. & Smeitink, J.A. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A > G mutation. J. Inherit. Metab. Dis. 35, 1059–1069 (2012).
    1. Kraya, T. , Deschauer, M. , Joshi, P.R. , Zierz, S. & Gaul, C. Prevalence of headache in patients with mitochondrial disease: a cross‐sectional study. Headache, 58, 45–52 (2017).
    1. Verhaak, C. et al Quality of life, fatigue and mental health in patients with the m.3243A > G mutation and its correlates with genetic characteristics and disease manifestation. Orphanet. J. Rare Dis. 11, 25 (2016).
    1. Kaufmann, P. et al Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology 77, 1965–1971 (2011).
    1. Nesbitt, V. et al The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A>G mutation–implications for diagnosis and management. J. Neurol. Neurosurg. Psychiatry 84, 936–938 (2013).
    1. Fayssoil, A. et al Prediction of long‐term prognosis by heteroplasmy levels of the m.3243A>G mutation in patients with the mitochondrial encephalomyopathy, lactic acidosis and stroke‐like episodes syndrome. Eur. J. Neurol. 24, 255–261 (2017).
    1. Wallace, D.C. , Fan, W. & Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297–348 (2010).
    1. Koopman, W.J. et al Mitochondrial disorders in children: toward development of small‐molecule treatment strategies. EMBO Mol. Med. 8, 311–327 (2016).
    1. Klopstock, T. et al A randomized placebo‐controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain 134, 2677–2686 (2011).
    1. Glover, E.I. , Martin, J. , Maher, A. , Thornhill, R.E. , Moran, G.R. & Tarnopolsky, M.A. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve 42, 739–748 (2010).
    1. Mascialino, B. , Leinonen, M. & Meier, T. Meta‐analysis of the prevalence of Leber hereditary optic neuropathy mtDNA mutations in Europe. Eur. J. Ophthalmol. 22, 461–465 (2012).
    1. Beyrath, J. et al KH176 safeguards mitochondrial diseased cells from redox stress‐induced cell death by interacting with the thioredoxin system/peroxiredoxin enzyme machinery. Sci. Rep. 8, 6577 (2018).
    1. de Haas, R. et al Therapeutic effects of the mitochondrial ROS‐redox modulator KH176 in a mammalian model of Leigh disease. Sci. Rep. 7, 11733 (2017).
    1. Koene, S. et al KH176 under development for rare mitochondrial disease: a first in man randomized controlled clinical trial in healthy male volunteers. Orphanet. J. Rare Dis. 12, 163 (2017).
    1. Galna, B. et al Discrete gait characteristics are associated with m.3243A>G and m.8344A>G variants of mitochondrial disease and its pathological consequences. J. Neurol. 261, 73–82 (2014).
    1. Ramakers, R. , Koene, S. , Groothuis, J.T. , de Laat, P. , Janssen, M.C. & Smeitink, J. Quantification of gait in mitochondrial m.3243A > G patients: a validation study. Orphanet. J. Rare Dis. 12, 91 (2017).
    1. Bansal, Y. & Kuhad, A. Mitochondrial dysfunction in depression. Curr. Neuropharmacol. 14, 610–618 (2016).
    1. Koene, S. et al Major depression in adolescent children consecutively diagnosed with mitochondrial disorder. J. Affect. Disord. 114, 327–332 (2009).
    1. Vollono, C. , Primiano, G. , Della Marca, G. , Losurdo, A. & Servidei, S. Migraine in mitochondrial disorders: prevalence and characteristics. Cephalalgia, 38, 1093–1106 (2017).
    1. Suomalainen, A. et al FGF‐21 as a biomarker for muscle‐manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 10, 806–818 (2011).
    1. Koene, S. et al Serum FGF21 levels in adult m.3243A>G carriers: clinical implications. Neurology 83, 125–133 (2014).
    1. Koene, S. et al Serum GDF15 levels correlate to mitochondrial disease severity and myocardial strain, but not to disease progression in adult m.3243A>G carriers. JIMD Rep. 24, 69–81 (2015).
    1. Hollingsworth, K.G. et al Cardiomyopathy is common in patients with the mitochondrial DNA m.3243A>G mutation and correlates with mutation load. Neuromuscul. Disord. 22, 592–596 (2012).
    1. Majamaa‐Voltti, K. , Peuhkurinen, K. , Kortelainen, M.L. , Hassinen, I.E. & Majamaa, K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc. Disord. 2, 12 (2002).
    1. Vydt, T.C. et al Cardiac involvement in adults with m.3243A>G MELAS gene mutation. Am. J. Cardiol. 99, 264–269 (2007).
    1. Schuller, Y. , Hollak, C.E.M. , Gispen‐de Wied, C.C. , Stoyanova‐Beninska, V. & Biegstraaten, M. Factors contributing to the efficacy‐effectiveness gap in the case of orphan drugs for metabolic diseases. Drugs 77, 1461–1472 (2017).

Source: PubMed

3
Abonnieren