The Role of Mineral and Trace Element Supplementation in Exercise and Athletic Performance: A Systematic Review

Shane Michael Heffernan, Katy Horner, Giuseppe De Vito, Gillian Eileen Conway, Shane Michael Heffernan, Katy Horner, Giuseppe De Vito, Gillian Eileen Conway

Abstract

Minerals and trace elements (MTEs) are micronutrients involved in hundreds of biological processes. Deficiency in MTEs can negatively affect athletic performance. Approximately 50% of athletes have reported consuming some form of micronutrient supplement; however, there is limited data confirming their efficacy for improving performance. The aim of this study was to systematically review the role of MTEs in exercise and athletic performance. Six electronic databases and grey literature sources (MEDLINE; EMBASE; CINAHL and SportDISCUS; Web of Science and clinicaltrials.gov) were searched, in accordance with PRISMA guidelines. Results: 17,433 articles were identified and 130 experiments from 128 studies were included. Retrieved articles included Iron (n = 29), Calcium (n = 11), Magnesium, (n = 22), Phosphate (n = 17), Zinc (n = 9), Sodium (n = 15), Boron (n = 4), Selenium (n = 5), Chromium (n = 12) and multi-mineral articles (n = 5). No relevant articles were identified for Copper, Manganese, Iodine, Nickel, Fluoride or Cobalt. Only Iron and Magnesium included articles of sufficient quality to be assigned as 'strong'. Currently, there is little evidence to support the use of MTE supplementation to improve physiological markers of athletic performance, with the possible exception of Iron (in particular, biological situations) and Magnesium as these currently have the strongest quality evidence. Regardless, some MTEs may possess the potential to improve athletic performance, but more high quality research is required before support for these MTEs can be given. PROSPERO preregistered (CRD42018090502).

Keywords: ergogenic aids; exercise and sport nutrition; muscle function; nutritional supplements; physical performance.

Conflict of interest statement

S.H. is in receipt of grant funding from Marigot Ltd. (V1253). K.H., G.D.V., and G.C. have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
PRISMA schematic summarising the search strategy and study selection. * One study assessed both Zn and Se separately and in combination (n = 3 groups). Thus, is counted in subsections Zn, Se and multi-minerals (also accounted for in all other cumulative study sample calculations).
Figure 2
Figure 2
EPHPP global quality rating. Presented as percentage of articles rated as strong, moderate and weak for each mineral.

References

    1. Lazarte C.E., Carlsson N.G., Almgren A., Sandberg A.S., Granfeldt Y. Phytate, zinc, iron and calcium content of common Bolivian food, and implications for mineral bioavailability. J. Food Compos. Anal. 2015;39:111–119. doi: 10.1016/j.jfca.2014.11.015.
    1. Gibson R.S., Bailey K.B., Gibbs M., Ferguson E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010;31:S134–S146. doi: 10.1177/15648265100312S206.
    1. Gupta U., Gupta S. Sources and deficiency diseases of mineral nutrients in human health and nutrition: A review. Pedosphere. 2014;24:13–38. doi: 10.1016/S1002-0160(13)60077-6.
    1. Asemi Z., Jamilian M., Mesdaghinia E., Esmaillzadeh A. Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: Randomized, double-blind, placebo-controlled trial. Nutrition (Burbank, Los Angeles County, Calif.) 2015;31:1235–1242. doi: 10.1016/j.nut.2015.04.014.
    1. Oropeza-Moe M., Wisloff H., Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol. 2015;31:148–156. doi: 10.1016/j.jtemb.2014.09.011.
    1. Del Gobbo L.C., Imamura F., Wu J.H.Y., de Oliveira-Otto M.C., Chiuve S.E., Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013;98:160–173. doi: 10.3945/ajcn.112.053132.
    1. Cheungpasitporn W., Thongprayoon C., Mao M.A., Srivali N., Ungprasert P., Varothai N., Sanguankeo A., Kittanamongkolchai W., Erickson S.B. Hypomagnesaemia linked to depression: A systematic review and meta-analysis. Intern. Med. J. 2015;45:436–440. doi: 10.1111/imj.12682.
    1. Fang X., Han H., Li M., Liang C., Fan Z., Aaseth J., He J., Montgomery S., Cao Y. Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: A systematic review and meta-regression analysis of prospective cohort studies. Nutrients. 2016;8:739. doi: 10.3390/nu8110739.
    1. Joosten M.M., Gansevoort R.T., Bakker S.J. Low plasma magnesium and risk of developing chronic kidney disease: Results from the PREVEND Study. Kidney Int. 2015;87:1262–1263. doi: 10.1038/ki.2015.33.
    1. Shaikh M.N., Malapati B.R., Gokani R., Patel B., Chatriwala M. Serum magnesium and vitamin D levels as indicators of asthma severity. Pulm. Med. 2016;2016:1–5. doi: 10.1155/2016/1643717.
    1. Rude R.K., Singer F.R., Gruber H.E. Skeletal and hormonal effects of magnesium deficiency. J. Am. Coll. Nutr. 2009;28:131–141. doi: 10.1080/07315724.2009.10719764.
    1. Kunutsor S.K., Whitehouse M.R., Blom A.W., Laukkanen J.A. Low serum magnesium levels are associated with increased risk of fractures: A long-term prospective cohort study. Eur. J. Epidemiol. 2017;32:593–603. doi: 10.1007/s10654-017-0242-2.
    1. Zhang Y., Xun P., Wang R., Mao L., He K. Can Magnesium Enhance Exercise Performance? Nutrients. 2017;9:946. doi: 10.3390/nu9090946.
    1. Speich M., Pineau A., Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Chim. Acta. 2001;312:1–11. doi: 10.1016/S0009-8981(01)00598-8.
    1. Williams M.H. Dietary supplements and sports performance: Minerals. J. Int. Soc. Sport Nutr. 2005;2:43–49. doi: 10.1186/1550-2783-2-1-43.
    1. Kreider R.B., Wilborn C.D., Taylor L., Campbell B., Almada A.L., Collins R., Cooke M., Earnest C.P., Greenwood M., Kalman D.S. ISSN exercise and sport nutrition review: Research and recommendations. J. Int. Soc. Sports Nutr. 2010;7–50:7. doi: 10.1186/1550-2783-7-7.
    1. Misner B. Food alone may not provide sufficient micronutrients for preventing deficiency. J. Int. Soc. Sports Nutr. 2006;3:51–55. doi: 10.1186/1550-2783-3-1-51.
    1. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jager R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018;15:38.
    1. Bailey R.L., West K.P., Black R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015;66:22–33. doi: 10.1159/000371618.
    1. Kumssa D.B., Joy E.J., Ander E.L., Watts M.J., Young S.D., Walker S., Broadley M.R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015;5:10974. doi: 10.1038/srep10974.
    1. Gröber U., Schmidt J., Kisters K. Magnesium in Prevention and Therapy. Nutrients. 2015;7:8199–8226. doi: 10.3390/nu7095388.
    1. Moshfegh A., Goldman J., Ahuja J., Rhodes D., LaComb R. What We Eat in America, NHANES 2005–2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. USDA; Washington, DC, USA: 2009. [(accessed on 18 February 2018)]. Available online: .
    1. Calton J.B. Prevalence of micronutrient deficiency in popular diet plans. J. Int. Soc. Sports Nutr. 2010;7:24. doi: 10.1186/1550-2783-7-24.
    1. Engel M., Kern H., Brenna J.T., Mitmesser S. Micronutrient gaps in three commercial weight-loss diet plans. Nutrients. 2018;10:108. doi: 10.3390/nu10010108.
    1. Kristensen N.B., Madsen M.L., Hansen T.H., Allin K.H., Hoppe C., Fagt S., Lausten M.S., Gobel R.J., Vestergaard H., Hansen T., et al. Intake of macro- and micronutrients in Danish vegans. Nutr. J. 2015;14:115. doi: 10.1186/s12937-015-0103-3.
    1. Castro-Quezada I., Roman-Vinas B., Serra-Majem L. The Mediterranean diet and nutritional adequacy: A review. Nutrients. 2014;6:231–248. doi: 10.3390/nu6010231.
    1. Birkenhead K.L., Slater G. A Review of Factors Influencing Athletes’ Food Choices. Sports Med. 2015;45:1511–1522. doi: 10.1007/s40279-015-0372-1.
    1. Volpe S.L. Magnesium and the athlete. Curr. Sports Med. Rep. 2015;14:279–283. doi: 10.1249/JSR.0000000000000178.
    1. Maynar M., Llerena F., Bartolome I., Alves J., Robles M.C., Grijota F.J., Munoz D. Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J. Int. Soc. Sports Nutr. 2018;15:8. doi: 10.1186/s12970-018-0212-4.
    1. Maynar M., Munoz D., Alves J., Barrientos G., Grijota F.J., Robles M.C., Llerena F. Influence of an Acute Exercise Until Exhaustion on Serum and Urinary Concentrations of Molybdenum, Selenium, and Zinc in Athletes. Biol. Trace Elem. Res. 2018;186:1327–1329. doi: 10.1007/s12011-018-1327-9.
    1. Wardenaar F.C., Ceelen I.J., Van Dijk J.W., Hangelbroek R.W., Van Roy L., Van der Pouw B., De Vries J.H., Mensink M., Witkamp R.F. Nutritional supplement use by dutch elite and sub-elite athletes: Does receiving dietary counseling make a difference? Int. J. Sport Nutr. Exerc. Metab. 2017;27:32–42. doi: 10.1123/ijsnem.2016-0157.
    1. Harrington J., Perry I., Lutomski J., Morgan K., McGee H., Shelley E., Watson D., Barry M. LÁN 2007: Survey of Lifestyle, A itudes and Nutrition in Ireland. Dietary Habits of the Irish Population. Dep Health Child 2008. [(accessed on 18 February 2018)]; Available online: .
    1. Wierniuk A., Wlodarek D. Estimation of energy and nutritional intake of young men practicing aerobic sports. Roczniki Panstwowego Zakladu Higieny. 2013;64:143–148.
    1. Heaney S., O’Connor H., Gifford J., Naughton G. Comparison of strategies for assessing nutritional adequacy in elite female athletes’ dietary intake. Int. J. Sport Nutr. Exer. Metab. 2010;20:245–256. doi: 10.1123/ijsnem.20.3.245.
    1. Wardenaar F., Brinkmans N., Ceelen I., Van Rooij B., Mensink M., Witkamp R., De Vries J. Micronutrient Intakes in 553 Dutch Elite and Sub-Elite Athletes: Prevalence of Low and High Intakes in Users and Non-Users of Nutritional Supplements. Nutrients. 2017;9:142. doi: 10.3390/nu9020142.
    1. Mir-Marques A., Cervera M.L., de la Guardia M. Mineral analysis of human diets by spectrometry methods. TrAC Trend Anal. Chem. 2016;82:457–467. doi: 10.1016/j.trac.2016.07.007.
    1. Freeland-Graves J.H., Sanjeevi N., Lee J.J. Global perspectives on trace element requirements. J. Trace Elem. Med. Biol. 2015;31:135–141. doi: 10.1016/j.jtemb.2014.04.006.
    1. Larson-Meyer D.E., Woolf K., Burke L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018;28:139–158. doi: 10.1123/ijsnem.2017-0338.
    1. Lee N. A review of magnesium, iron, and zinc supplementation effects on athletic performance. Korean J. Phys. Edu. 2017;56:797–806. doi: 10.23949/kjpe.2017.01.56.1.59.
    1. Knapik J.J., Steelman R.A., Hoedebecke S.S., Austin K.G., Farina E.K., Lieberman H.R. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sports Med. 2016;46:103–123. doi: 10.1007/s40279-015-0387-7.
    1. Chu A., Holdaway C., Varma T., Petocz P., Samman S. Lower serum zinc concentration despite higher dietary zinc intake in athletes: A systematic review and meta-analysis. Sports Med. 2018;48:327–336. doi: 10.1007/s40279-017-0818-8.
    1. Burden R.J., Morton K., Richards T., Whyte G.P., Pedlar C.R. Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? a systematic review and meta-analysis. Br. J. Sports Med. 2015;49:1389–1397. doi: 10.1136/bjsports-2014-093624.
    1. Rubeor A., Goojha C., Manning J., White J. Does iron supplementation improve performance in iron-deficient nonanemic athletes? Sports Health. 2018 doi: 10.1177/1941738118777488. Ahead of print.
    1. Peeling P., Binnie M.J., Goods P.S.R., Sim M., Burke L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:178–187. doi: 10.1123/ijsnem.2017-0343.
    1. Newhouse I.J., Finstad E.W. The effects of magnesium supplementation on exercise performance. Clin. J. Sport Med. 2000;10:195–200. doi: 10.1097/00042752-200007000-00008.
    1. Sieja K., von Mach-Szczypińska J., Kois N., Ler P., Piechanowska K., Stolarska M. Influence of selenium on oxidative stress in athletes. Cent. Eur. J. Sport Sci. Med. 2016;14:87–92.
    1. Rayssiguier Y., Guezennec C.Y., Durlach J. New experimental and clinical data on the relationship between magnesium and sport. Magn. Res. 1990;3:93–102.
    1. Armstrong L.E., Maresh C.M. Vitamin and mineral supplements as nutritional aids to exercise performance and health. Nutr. Rev. 1996;54:S149–S158. doi: 10.1111/j.1753-4887.1996.tb03911.x.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gotzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. PLos Med. 2009;6:e1000100. doi: 10.1371/journal.pmed.1000100.
    1. O’Connor D., Green S., Higgins J.P. Defining the Review Question and Developing Criteria for Including Studies. Wiley Online Library; Hoboken, NJ, USA: 2008. pp. 81–94. (Cochrane Book Series).
    1. Shea K.L., Barry D.W., Sherk V.D., Hansen K.C., Wolfe P., Kohrt W.M. Calcium supplementation and parathyroid hormone response to vigorous walking in postmenopausal women. Med. Sci. Sports Exerc. 2014;46:2007–2013. doi: 10.1249/MSS.0000000000000320.
    1. Moëzzi N., Peeri M., Matin H. Effects of zinc, magnesium and vitamin B6 supplementation on hormones and performance in weightlifters. Ann. Biol. Res. 2013;4:163–168.
    1. Thomas B., Ciliska D., Dobbins M., Micucci S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldv. Evid. Based Nurs. 2004;1:176–184. doi: 10.1111/j.1524-475X.2004.04006.x.
    1. DellaValle D.M., Haas J.D. Iron supplementation improves energetic efficiency in iron-depleted female rowers. Med. Sci. Sports Exerc. 2014;46:1204–1215. doi: 10.1249/MSS.0000000000000208.
    1. Villanueva J., Soria M., Gonzalez-Haro C., Ezquerra L., Nieto J.L., Escanero J.F. Oral iron treatment has a positive effect on iron metabolism in elite soccer players. Biol. Trace Elem. Res. 2011;142:398–406. doi: 10.1007/s12011-010-8813-z.
    1. Blee T., Goodman C., Dawson B., Stapff A. The effect of intramuscular iron injections on serum ferritin levels and physical performance in elite netballers. J. Sci. Med. Sport. 1999;2:311–321. doi: 10.1016/S1440-2440(99)80004-8.
    1. Powell P.D., Tucker A. Iron supplementation and running performance in female cross-country runners. Int. J. Sports Med. 1991;12:462–467. doi: 10.1055/s-2007-1024714.
    1. Ashenden M.J., Pyne D.B., Parisotto R., Dobson G.P., Hahn A.G. Can reticulocyte parameters be of use in detecting iron deficient erythropoiesis in female athletes? J. Sports Med. Phys. Fit. 1999;39:140–146.
    1. Haymes E.M., Puhl J.L., Temples T.E. Training for cross-country skiing and iron status. Med. Sci. Sports Exerc. 1986;18:162–167. doi: 10.1249/00005768-198604000-00003.
    1. Govus A.D., Garvican-Lewis L.A., Abbiss C.R., Peeling P., Gore C.J. Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS ONE. 2015;10:e0135120. doi: 10.1371/journal.pone.0135120.
    1. Flynn M.G., Mackinnon L., Gedge V., Fahlman M., Brickman T. Influence of iron status and iron supplements on natural killer cell activity in trained women runners. Int. J. Sports Med. 2003;24:217–222. doi: 10.1055/s-2003-39095.
    1. Hinton P.S., Sinclair L.M. Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Eur. J. Clin. Nutr. 2007;61:30–39. doi: 10.1038/sj.ejcn.1602479.
    1. LaManca J.J., Haymes E.M. Effects of iron repletion on VO2max, endurance, and blood lactate in women. Med. Sci. Sports Exerc. 1993;25:1386–1392. doi: 10.1249/00005768-199312000-00012.
    1. Dressendorfer R.H., Keen C.L., Wade C.E., Claybaugh J.R., Timmis G.C. Development of runner’s anemia during a 20-day road race: Effect of iron supplements. Int. J. Sports Med. 1991;12:332–336. doi: 10.1055/s-2007-1024692.
    1. Friedmann B., Jost J., Rating T., Weller E., Werle E., Eckardt K.U., Bartsch P., Mairbaurl H. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude. Int. J. Sports Med. 1999;20:78–85. doi: 10.1055/s-2007-971097.
    1. Jensen C.A., Weaver C.M., Sedlock D.A. Iron supplementation and iron status in exercising young women. J. Nutr. Biochem. 1991;2:368–373. doi: 10.1016/0955-2863(91)90093-K.
    1. Fogelholm M., Jaakkola L., Lampisjarvi T. Effects of iron supplementation in female athletes with low serum ferritin concentration. Int. J. Sports Med. 1992;13:158–162. doi: 10.1055/s-2007-1021248.
    1. Klingshirn L.A., Pate R.R., Bourque S.P., Davis J.M., Sargent R.G. Effect of iron supplementation on endurance capacity in iron-depleted female runners. Med. Sci. Sports Exerc. 1992;24:819–824. doi: 10.1249/00005768-199207000-00013.
    1. Hegenauer J., Strause L., Saltman P., Dann D., White J., Green R. Transitory hematologic effects of moderate exercise are not influenced by iron supplementation. Eur. J. Appl. Physiol. Occup. Physiol. 1983;52:57–61. doi: 10.1007/BF00429026.
    1. Magazanik A., Weinstein Y., Abarbanel J., Lewinski U., Shapiro Y., Inbar O., Epstein S. Effect of an iron supplement on body iron status and aerobic capacity of young training women. Eur. J. Appl. Physiol. Occup. Physiol. 1991;62:317–323. doi: 10.1007/BF00634966.
    1. Hinton P.S., Giordano C., Brownlie T., Haas J.D. Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J. Appl. Physiol. 2000;88:1103–1111. doi: 10.1152/jappl.2000.88.3.1103.
    1. McClung J.P., Karl J.P., Cable S.J., Williams K.W., Nindl B.C., Young A.J., Lieberman H.R. Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: Effects on iron status, physical performance, and mood. Am. J. Clin. Nutr. 2009;90:124–131. doi: 10.3945/ajcn.2009.27774.
    1. Yoshida T., Udo M., Chida M., Ichioka M., Makiguchi K. Dietary iron supplement during severe physical training in competitive female distance runners. Res. Sport Med. 1990;1:279–285. doi: 10.1080/15438629009511885.
    1. Brutsaert T.D., Hernandez-Cordero S., Rivera J., Viola T., Hughes G., Haas J.D. Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am. J. Clin. Nutr. 2003;77:441–448. doi: 10.1093/ajcn/77.2.441.
    1. Mielgo-Ayuso J., Zourdos M.C., Calleja-Gonzalez J., Urdampilleta A., Ostojic S. Iron supplementation prevents a decline in iron stores and enhances strength performance in elite female volleyball players during the competitive season. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2015;40:615–622. doi: 10.1139/apnm-2014-0500.
    1. Ohira Y., Edgerton V.R., Gardner G.W., Senewiratne B., Barnard R.J., Simpson D.R. Work capacity, heart rate and blood lactate responses to iron treatment. Br. J. Haematol. 1979;41:365–372. doi: 10.1111/j.1365-2141.1979.tb05869.x.
    1. Garvican L.A., Saunders P.U., Cardoso T., Macdougall I.C., Lobigs L.M., Fazakerley R., Fallon K.E., Anderson B., Anson J.M., Thompson K.G., et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med. Sci. Sports Exerc. 2014;46:376–385. doi: 10.1249/MSS.0b013e3182a53594.
    1. Peeling P., Blee T., Goodman C., Dawson B., Claydon G., Beilby J., Prins A. Effect of iron injections on aerobic-exercise performance of iron-depleted female athletes. Int. J. Sport Nutr. Exerc. Metab. 2007;17:221–231. doi: 10.1123/ijsnem.17.3.221.
    1. Woods A., Garvican-Lewis L.A., Saunders P.U., Lovell G., Hughes D., Fazakerley R., Anderson B., Gore C.J., Thompson K.G. Four weeks of IV iron supplementation reduces perceived fatigue and mood disturbance in distance runners. PLoS ONE. 2014;9:e108042. doi: 10.1371/journal.pone.0108042.
    1. Townsend R., Elliott-Sale K.J., Pinto A.J., Thomas C., Scott J.P., Currell K., Fraser W.D., Sale C. Parathyroid hormone secretion Is controlled by both ionized calcium and phosphate during exercise and recovery in men. J. Clin. Endocrinol. Metab. 2016;101:3231–3239. doi: 10.1210/jc.2016-1848.
    1. Martin B.R., Davis S., Campbell W.W., Weaver C.M. Exercise and calcium supplementation: Effects on calcium homeostasis in sportswomen. Med. Sci. Sports Exerc. 2007;39:1481–1486. doi: 10.1249/mss.0b013e318074ccc7.
    1. Frontera W.R., Ochala J. Skeletal muscle: A brief review of structure and function. Calcif. Tissue Int. 2015;96:183–195. doi: 10.1007/s00223-014-9915-y.
    1. Pu F., Chen N., Xue S. Calcium intake, calcium homeostasis and health. Food Sci. Hum. Well. 2016;5:8–16. doi: 10.1016/j.fshw.2016.01.001.
    1. Zorbas Y.G., Petrov K.L., Kakurin V.J., Kuznetsov N.A., Charapakhin K.P., Alexeyev I.D., Denogradov S.D. Calcium supplementation effect on calcium balance in endurance-trained athletes during prolonged hypokinesia and ambulatory conditions. Biol. Trace Elem. Res. 2000;73:231–250. doi: 10.1385/BTER:73:3:231.
    1. Zorbas Y.G., Kakurin V.J., Kuznetsov N.A., Yarullin V.L., Andreyev I.D., Charapakhin K.P. Measurements in calcium-supplemented athletes during and after hypokinetic and ambulatory conditions. Clin. Biochem. 2000;33:393–404. doi: 10.1016/S0009-9120(00)00154-5.
    1. Kohrt W.M., Wherry S.J., Wolfe P., Sherk V.D., Wellington T., Swanson C.M., Weaver C.M., Boxer R.S. Maintenance of serum ionized calcium during exercise attenuates parathyroid hormone and bone resorption responses. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018;33:1326–1334. doi: 10.1002/jbmr.3428.
    1. Guillemant J., Accarie C., Peres G., Guillemant S. Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif. Tissue Int. 2004;74:407–414. doi: 10.1007/s00223-003-0070-0.
    1. Visser M., Deeg D.J., Lips P. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The Longitudinal Aging Study Amsterdam. J. Clin. Endocrinol. Metab. 2003;88:5766–5772. doi: 10.1210/jc.2003-030604.
    1. Passeri E., Bugiardini E., Sansone V.A., Valaperta R., Costa E., Ambrosi B., Meola G., Corbetta S. Vitamin D, parathyroid hormone and muscle impairment in myotonic dystrophies. J. Neurol. Sci. 2013;331:132–135. doi: 10.1016/j.jns.2013.06.008.
    1. Sikjaer T., Rolighed L., Hess A., Fuglsang-Frederiksen A., Mosekilde L., Rejnmark L. Effects of PTH(1-84) therapy on muscle function and quality of life in hypoparathyroidism: Results from a randomized controlled trial. Osteoporos. Int. 2014;25:1717–1726. doi: 10.1007/s00198-014-2677-6.
    1. Haakonssen E.C., Ross M.L., Knight E.J., Cato L.E., Nana A., Wluka A.E., Cicuttini F.M., Wang B.H., Jenkins D.G., Burke L.M. The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists: A randomised crossover trial. PLoS ONE. 2015;10:e0123302. doi: 10.1371/journal.pone.0123302.
    1. Cinar V., Baltaci A.K., Mogulkoc R., Kilic M. Testosterone levels in athletes at rest and exhaustion: Effects of calcium supplementation. Biol. Trace Elem. Res. 2009;129:65–69. doi: 10.1007/s12011-008-8294-5.
    1. Cinar V., Baltaci A.K., Mogulkoc R. Effect of exhausting exercise and calcium supplementation on potassium, magnesium, copper, zinc and calcium levels in athletes. Pak. J. Med. Sci. 2009;25:238–242.
    1. Cinar V., Mogulkoc R., Baltaci A.K., Bostanci O. Effects of calcium supplementation on glucose and insulin levels of athletes at rest and after exercise. Biol. Trace Elem. Res. 2010;133:29–33. doi: 10.1007/s12011-009-8409-7.
    1. Cinar V., Mogulkoc R., Baltaci A.K. Calcium supplementation and 4-week exercise on blood parameters of athletes at rest and exhaustion. Biol. Trace Elem. Res. 2010;134:130–135. doi: 10.1007/s12011-009-8459-x.
    1. Cinar V., Cakmakci O., Mogulkoc R., Baltaci A.K. Effects of exhaustion and calcium supplementation on adrenocorticotropic hormone and cortisol levels in athletes. Biol. Trace Elem. Res. 2009;127:1–5. doi: 10.1007/s12011-008-8217-5.
    1. Farrell P.A., Garthwaite T.L., Gustafson A.B. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55:1441–1444. doi: 10.1152/jappl.1983.55.5.1441.
    1. Burt M.G., Mangelsdorf B.L., Srivastava D., Petersons C.J. Acute effect of calcium citrate on serum calcium and cardiovascular function. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013;28:412–418. doi: 10.1002/jbmr.1761.
    1. Rios E. Calcium-induced release of calcium in muscle: 50 years of work and the emerging consensus. J. Gener. Physiol. 2018;150:521–537. doi: 10.1085/jgp.201711959.
    1. Welch A.A., Kelaiditi E., Jennings A., Steves C.J., Spector T.D., MacGregor A. Dietary magnesium Is positively associated with skeletal muscle power and indices of muscle mass and may attenuate the association between circulating C-Reactive Protein and muscle mass in women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2016;31:317–325. doi: 10.1002/jbmr.2692.
    1. Welch A.A., Skinner J., Hickson M. Dietary magnesium may be protective for aging of bone and skeletal muscle in middle and younger older age men and women: Cross-sectional findings from the UK biobank cohort. Nutrients. 2017;9:1189. doi: 10.3390/nu9111189.
    1. Wang R., Chen C., Liu W., Zhou T., Xun P., He K., Chen P. The effect of magnesium supplementation on muscle fitness: A meta-analysis and systematic review. Magn. Res. 2017;30:120–132.
    1. Brilla L.R., Haley T.F. Effect of magnesium supplementation on strength training in humans. J. Am. Coll. Nutr. 1992;11:326–329. doi: 10.1080/07315724.1992.10718233.
    1. Dmitrasinovic G., Pesic V., Stanic D., Plecas-Solarovic B., Dajak M., Ignjatovic S. ACTH, cortisol and IL-6 Levels in athletes following magnesium supplementation. J. Med. Biochem. 2016;35:375–384. doi: 10.1515/jomb-2016-0021.
    1. Kass L.S., Skinner P., Poeira F. A pilot study on the effects of magnesium supplementation with high and low habitual dietary magnesium intake on resting and recovery from aerobic and resistance exercise and systolic blood pressure. J. Sports Sci. Med. 2013;12:144–150.
    1. Finstad E.W., Newhouse I.J., Lukaski H.C., McAuliffe J.E., Stewart C.R. The effects of magnesium supplementation on exercise performance. Med. Sci. Sports Exerc. 2001;33:493–498. doi: 10.1097/00005768-200103000-00024.
    1. Setaro L., Santos-Silva P.R., Nakano E.Y., Sales C.H., Nunes N., Greve J.M., Colli C. Magnesium status and the physical performance of volleyball players: Effects of magnesium supplementation. J. Sports Sci. 2014;32:438–445. doi: 10.1080/02640414.2013.828847.
    1. Zorbas Y.G., Kakurin V.J., Afonin V.B., Charapakhin K.P., Denogradov S.D. Magnesium supplements’ effect on magnesium balance in athletes during prolonged restriction of muscular activity. Kidney Blood Press. Res. 1999;22:146–153. doi: 10.1159/000025921.
    1. Molina-Lopez J., Molina J.M., Chirosa L.J., Florea D., Saez L., Millan E., Planells E. Association between erythrocyte concentrations of magnesium and zinc in high-performance handball players after dietary magnesium supplementation. Magn. Res. 2012;25:79–88.
    1. Cordova Martinez A., Fernandez-Lazaro D., Mielgo-Ayuso J., Seco Calvo J., Caballero Garcia A. Effect of magnesium supplementation on muscular damage markers in basketball players during a full season. Magn. Res. 2017;30:61–70.
    1. Porta S., Gell H., Pichlkastner K., Porta J., von Ehrlich B., Vormann J., Stossier H., Kisters K. A system of changes of ionized blood Mg through sports and supplementation. Trace Elem. Electrolytes. 2013;30:105–107. doi: 10.5414/TEX01298.
    1. Zorbas Y.G., Kakurin A.G., Kuznetsov N.K., Federov M.A., Yaroshenko Y.Y. Magnesium loading effect on magnesium deficiency in endurance-trained subjects during prolonged restriction of muscular activity. Biol. Trace Elem. Res. 1998;63:149–166. doi: 10.1007/BF02778874.
    1. Terblanche S., Noakes T.D., Dennis S.C., Marais D., Eckert M. Failure of magnesium supplementation to influence marathon running performance or recovery in magnesium-replete subjects. Int. J. Sport Nutr. 1992;2:154–164. doi: 10.1123/ijsn.2.2.154.
    1. Weller E., Bachert P., Meinck H.M., Friedmann B., Bartsch P., Mairbaurl H. Lack of effect of oral Mg-supplementation on Mg in serum, blood cells, and calf muscle. Med. Sci. Sports Exerc. 1998;30:1584–1591. doi: 10.1097/00005768-199811000-00005.
    1. Darooghegi Mofrad M., Djafarian K., Mozaffari H., Shab-Bidar S. Effect of magnesium supplementation on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis. 2018;273:98–105. doi: 10.1016/j.atherosclerosis.2018.04.020.
    1. Kass L.S., Poeira F. The effect of acute vs chronic magnesium supplementation on exercise and recovery on resistance exercise, blood pressure and total peripheral resistance on normotensive adults. J. Int. Soc. Sports Nutr. 2015;12:19. doi: 10.1186/s12970-015-0081-z.
    1. Veronese N., Berton L., Carraro S., Bolzetta F., De Rui M., Perissinotto E., Toffanello E.D., Bano G., Pizzato S., Miotto F., et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: A randomized controlled trial. Am. J. Clin. Nutr. 2014;100:974–981. doi: 10.3945/ajcn.113.080168.
    1. Petrovic J., Stanic D., Dmitrasinovic G., Plecas-Solarovic B., Ignjatovic S., Batinic B., Popovic D., Pesic V. Magnesium supplementation diminishes peripheral blood lymphocyte DNA oxidative damage in athletes and sedentary young man. Oxid. Med. Cell. Longev. 2016;2016:2019643. doi: 10.1155/2016/2019643.
    1. Margaritelis N.V., Theodorou A.A., Paschalis V., Veskoukis A.S., Dipla K., Zafeiridis A., Panayiotou G., Vrabas I.S., Kyparos A., Nikolaidis M.G. Adaptations to endurance training depend on exercise-induced oxidative stress: Exploiting redox interindividual variability. Acta Physiol. 2018;222:e12898. doi: 10.1111/apha.12898.
    1. Hawley J.A., Lundby C., Cotter J.D., Burke L.M. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018;27:962–976. doi: 10.1016/j.cmet.2018.04.014.
    1. Jaimovich E., Casas M. Evaluating the essential role of RONS in vivo in exercised human muscle. Acta Physiol. 2018;222:e12972. doi: 10.1111/apha.12972.
    1. Cinar V., Polat Y., Baltaci A.K., Mogulkoc R. Effects of magnesium supplementation on testosterone levels of athletes and sedentary subjects at rest and after exhaustion. Biol. Trace Elem. Res. 2011;140:18–23. doi: 10.1007/s12011-010-8676-3.
    1. Cinar V., Mogulkoc R., Baltaci A.K., Nizamlioglu M. Effect of magnesium supplementation on some plasma elements in athletes at rest and exhaustion. Biol. Trace Elem. Res. 2007;119:97–102. doi: 10.1007/s12011-007-0024-x.
    1. Cinar V., Nizamlioglu M., Mogulkoc R., Baltaci A.K. Effects of magnesium supplementation on blood parameters of athletes at rest and after exercise. Biol. Trace Elem. Res. 2007;115:205–212. doi: 10.1007/BF02685995.
    1. Cinar V., Mogulkoc R., Baltaci A.K., Polat Y. Adrenocorticotropic hormone and cortisol levels in athletes and sedentary subjects at rest and exhaustion: Effects of magnesium supplementation. Biol. Trace Elem. Res. 2008;121:215–220. doi: 10.1007/s12011-007-8052-0.
    1. Cinar V., Polat Y., Mogulkoc R., Nizamlioglu M., Baltaci A.K. The effect of magnesium supplementation on glucose and insulin levels of tae-kwan-do sportsmen and sedentary subjects. Pak. J. Pharm. Sci. 2008;21:237–240.
    1. Parazzini F., Di Martino M., Pellegrino P. Magnesium in the gynecological practice: A literature review. Magn. Res. 2017;30:1–7.
    1. Kopec B.J., Dawson B.T., Buck C., Wallman K.E. Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. J. Sci. Med. Sport. 2016;19:272–276. doi: 10.1016/j.jsams.2015.04.001.
    1. Buck C., Guelfi K., Dawson B., McNaughton L., Wallman K. Effects of sodium phosphate and caffeine loading on repeated-sprint ability. J. Sports Sci. 2015;33:1971–1979. doi: 10.1080/02640414.2015.1025235.
    1. Buck C.L., Henry T., Guelfi K., Dawson B., McNaughton L.R., Wallman K. Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. Eur. J. Appl. Physiol. 2015;115:2205–2213. doi: 10.1007/s00421-015-3201-1.
    1. Brewer C.P., Dawson B., Wallman K.E., Guelfi K.J. Effect of sodium phosphate supplementation on repeated high-intensity cycling efforts. J. Sports Sci. 2015;33:1109–1116. doi: 10.1080/02640414.2014.989536.
    1. Folland J.P., Stern R., Brickley G. Sodium phosphate loading improves laboratory cycling time-trial performance in trained cyclists. J. Sci. Med. Sport. 2008;11:464–468. doi: 10.1016/j.jsams.2007.04.004.
    1. Brewer C.P., Dawson B., Wallman K.E., Guelfi K.J. Effect of repeated sodium phosphate loading on cycling time-trial performance and VO2peak. Int. J. Sport Nutr. Exerc. Metab. 2013;23:187–194. doi: 10.1123/ijsnem.23.2.187.
    1. Goss F., Robertson R., Riechman S., Zoeller R., Dabayebeh I.D., Moyna N., Boer N., Peoples J., Metz K. Effect of potassium phosphate supplementation on perceptual and physiological responses to maximal graded exercise. Int. J. Sport Nutr. Exerc. Metab. 2001;11:53–62. doi: 10.1123/ijsnem.11.1.53.
    1. Kreider R.B., Miller G.W., Schenck D., Cortes C.W., Miriel V., Somma C.T., Rowland P., Turner C., Hill D. Effects of phosphate loading on metabolic and myocardial responses to maximal and endurance exercise. Int. J. Sport Nutr. 1992;2:20–47. doi: 10.1123/ijsn.2.1.20.
    1. Cubbon R.M., Thomas C.H., Drozd M., Gierula J., Jamil H.A., Byrom R., Barth J.H., Kearney M.T., Witte K.K. Calcium, phosphate and calcium phosphate product are markers of outcome in patients with chronic heart failure. J. Nephrol. 2015;28:209–215. doi: 10.1007/s40620-014-0075-y.
    1. Ye M., Tian N., Liu Y., Li W., Lin H., Fan R., Li C., Liu D., Yao F. High Serum Phosphorus Level Is Associated with Left Ventricular Diastolic Dysfunction in Peritoneal Dialysis Patients. PLoS ONE. 2016;11:e0163659. doi: 10.1371/journal.pone.0163659.
    1. Keskek S.O., Sagliker Y., Kirim S., Icen Y.K., Yildirim A. Low serum phosphorus level in massry’s phosphate depletion syndrome may be one of the causes of acute heart failure. J. Nutr. Sci. Vitaminol. 2015;61:460–464. doi: 10.3177/jnsv.61.460.
    1. Amin M., Fawzy A., Hamid M.A., Elhendy A. Pulmonary hypertension in patients with chronic renal failure: Role of parathyroid hormone and pulmonary artery calcifications. Chest. 2003;124:2093–2097. doi: 10.1378/chest.124.6.2093.
    1. Kamiyama Y., Suzuki H., Yamada S., Kaneshiro T., Takeishi Y. Serum phosphate levels reflect responses to cardiac resynchronization therapy in chronic heart failure patients. J. Arrhythm. 2015;31:38–42. doi: 10.1016/j.joa.2014.06.006.
    1. Czuba M., Zając A., Poprzecki S., Cholewa J. The influence of sodium phosphate supplementation on VO2max, serum 2, 3-diphosphoglycerate level and heart rate in off-road cyclists. J. Hum. Kinet. 2008;19:149–164. doi: 10.2478/v10078-008-0012-z.
    1. Czuba M., Zajac A., Poprzecki S., Cholewa J., Woska S. Effects of sodium phosphate loading on aerobic power and capacity in off road cyclists. J. Sports Sci. Med. 2009;8:591–599.
    1. Cade R., Conte M., Zauner C., Mars D., Peterson J., Lunne D., Hommen N., Packer D. Effects of phosphate loading on 2,3-diphosphoglycerate and maximal oxygen uptake. Med. Sci. Sports Exerc. 1984;16:263–268. doi: 10.1249/00005768-198406000-00011.
    1. Stewart I., McNaughton L., Davies P., Tristram S. Phosphate loading and the effects on VO2max in trained cyclists. Res. Q. Exerc. Sport. 1990;61:80–84. doi: 10.1080/02701367.1990.10607481.
    1. West J.S., Ayton T., Wallman K.E., Guelfi K.J. The effect of 6 days of sodium phosphate supplementation on appetite, energy intake, and aerobic capacity in trained men and women. Int. J. Sport Nutr. Exerc. Metab. 2012;22:422–429. doi: 10.1123/ijsnem.22.6.422.
    1. Buck C.L., Dawson B., Guelfi K.J., McNaughton L., Wallman K.E. Sodium phosphate supplementation and time trial performance in female cyclists. J. Sports Sci. Med. 2014;13:469–475.
    1. Duffy D.J., Conlee R.K. Effects of phosphate loading on leg power and high intensity treadmill exercise. Med. Sci. Sports Exerc. 1986;18:674–677. doi: 10.1249/00005768-198612000-00012.
    1. Galloway S.D., Tremblay M.S., Sexsmith J.R., Roberts C.J. The effects of acute phosphate supplementation in subjects of different aerobic fitness levels. Eur. J. Appl. Physiol. Occup. Physiol. 1996;72:224–230. doi: 10.1007/BF00838643.
    1. Singh A., Failla M.L., Deuster P.A. Exercise-induced changes in immune function: Effects of zinc supplementation. J. Appl. Physiol. 1994;76:2298–2303. doi: 10.1152/jappl.1994.76.6.2298.
    1. Kilic M., Baltaci A.K., Gunay M. Effect of zinc supplementation on hematological parameters in athletes. Biol. Trace Elem. Res. 2004;100:31–38. doi: 10.1385/BTER:100:1:031.
    1. Polat Y. Effects of zinc supplementation on hematological parameters of high performance athletes. Afr. J. Pharm. Pharmacol. 2011;5:1436–1440. doi: 10.5897/AJPP11.062.
    1. Saeedy M., Bijeh N., Moazzami M. The effect of six weeks of high-intensity interval training with and without zinc supplementation on aerobic power and anaerobic power in female futsal players. Int. J. Appl. Exerc. Phys. 2016;5:1–10.
    1. Davison G., Marchbank T., March D.S., Thatcher R., Playford R.J. Zinc carnosine works with bovine colostrum in truncating heavy exercise-induced increase in gut permeability in healthy volunteers. Am. J. Clin. Nutr. 2016;104:526–536. doi: 10.3945/ajcn.116.134403.
    1. Khaled S., Brun J.F., Cassanas G., Bardet L., Orsetti A. Effects of zinc supplementation on blood rheology during exercise. Clin. Hemorheol. Microcirc. 1999;20:1–10.
    1. Smith M.M., Lucas A.R., Hamlin R.L., Devor S.T. Associations among hemorheological factors and maximal oxygen consumption. Is there a role for blood viscosity in explaining athletic performance? Clin. Hemorheol. Microcirc. 2015;60:347–362. doi: 10.3233/CH-131708.
    1. Marques L.F., Donangelo C.M., Franco J.G., Pires L., Luna A.S., Casimiro-Lopes G., Lisboa P.C., Koury J.C. Plasma zinc, copper, and serum thyroid hormones and insulin levels after zinc supplementation followed by placebo in competitive athletes. Biol. Trace Elem. Res. 2011;142:415–423. doi: 10.1007/s12011-010-8821-z.
    1. Bajpeyi S., Tanner C.J., Slentz C.A., Duscha B.D., McCartney J.S., Hickner R.C., Kraus W.E., Houmard J.A. Effect of exercise intensity and volume on persistence of insulin sensitivity during training cessation. J. Appl. Physiol. 2009;106:1079–1085. doi: 10.1152/japplphysiol.91262.2008.
    1. Fisher G., Brown A.W., Bohan Brown M.M., Alcorn A., Noles C., Winwood L., Resuehr H., George B., Jeansonne M.M., Allison D.B. High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: A randomized controlled trial. PLoS ONE. 2015;10:e0138853. doi: 10.1371/journal.pone.0138853.
    1. McGarrah R.W., Slentz C.A., Kraus W.E. The effect of vigorous- versus moderate-intensity aerobic exercise on insulin action. Curr. Cardiol. Rep. 2016;18:117. doi: 10.1007/s11886-016-0797-7.
    1. Cruz K.J., Morais J.B., de Oliveira A.R., Severo J.S., Marreiro D.D. The effect of zinc supplementation on insulin resistance in obese subjects: A systematic review. Biol. Trace Elem. Res. 2017;176:239–243. doi: 10.1007/s12011-016-0835-8.
    1. Perseghin G., Burska A., Lattuada G., Alberti G., Costantino F., Ragogna F., Oggionni S., Scollo A., Terruzzi I., Luzi L. Increased serum resistin in elite endurance athletes with high insulin sensitivity. Diabetologia. 2006;49:1893–1900. doi: 10.1007/s00125-006-0267-7.
    1. Cınar V., Talaghir L.G., Akbulut T., Turgut M., Sarıkaya M. The effects of the zinc supplementation and weight trainings on the testosterone levels. Hum. Sport Med. 2017;17:58–63.
    1. Cinar V., Akbulut T., Sarikaya M. Effect of zinc supplement and weight lifting exercise on thyroid hormone levels. Indian J. Physiol. Pharmacol. 2017;61:232–236.
    1. Shafiei-Neek L., Gaeini A.A., Choobineh S. Effect of zinc and selenium supplementation on serum testosterone and plasma lactate in cyclist after an exhaustive exercise bout. Biol. Trace Elem. Res. 2011;144:454–462. doi: 10.1007/s12011-011-9138-2.
    1. Sims S.T., Rehrer N.J., Bell M.L., Cotter J.D. Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. J. Appl. Physiol. 2007;103:534–541. doi: 10.1152/japplphysiol.01203.2006.
    1. Sims S.T., van Vliet L., Cotter J.D., Rehrer N.J. Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat. Med. Sci. Sports Exerc. 2007;39:123–130. doi: 10.1249/01.mss.0000241639.97972.4a.
    1. Speedy D.B., Thompson J.M., Rodgers I., Collins M., Sharwood K., Noakes T.D. Oral salt supplementation during ultradistance exercise. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2002;12:279–284. doi: 10.1097/00042752-200209000-00004.
    1. Sanders B., Noakes T.D., Dennis S.C. Sodium replacement and fluid shifts during prolonged exercise in humans. Eur. J. Appl. Physiol. 2001;84:419–425. doi: 10.1007/s004210000371.
    1. Zorbas Y.G., Petrov K.L., Yarullin V.L., Kakurin V.J., Popov V.K., Deogeneov V.A. Effect of fluid and salt supplementation on body hydration of athletes during prolonged hypokinesia. Acta Astronaut. 2002;50:641–651. doi: 10.1016/S0094-5765(01)00216-8.
    1. Zorbas Y.G., Kakurin V.J., Kuznetsov N.A., Yarullin V.L. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation. Acta Astronaut. 2002;50:765–774. doi: 10.1016/S0094-5765(02)00012-7.
    1. Anastasiou C.A., Kavouras S.A., Arnaoutis G., Gioxari A., Kollia M., Botoula E., Sidossis L.S. Sodium replacement and plasma sodium drop during exercise in the heat when fluid intake matches fluid loss. J. Athl. Train. 2009;44:117–123. doi: 10.4085/1062-6050-44.2.117.
    1. Barr S.I., Costill D.L., Fink W.J. Fluid replacement during prolonged exercise: Effects of water, saline, or no fluid. Med. Sci. Sports Exerc. 1991;23:811–817. doi: 10.1249/00005768-199107000-00007.
    1. Hew-Butler T., Loi V., Pani A., Rosner M.H. Exercise-associated hyponatremia: 2017 Update. Front. Med. 2017;4:21. doi: 10.3389/fmed.2017.00021.
    1. Driller M., Williams A., Bellinger P., Howe S., Fell J. The effects of NaHCO3 and NaCl loading on hematocrit and high-intensity cycling performance. J. Exerc. Phys. 2012;15:47–57.
    1. Earhart E.L., Weiss E.P., Rahman R., Kelly P.V. Effects of oral sodium supplementation on indices of thermoregulation in trained, endurance athletes. J. Sports Sci. Med. 2015;14:172–178.
    1. Hew-Butler T.D., Sharwood K., Collins M., Speedy D., Noakes T. Sodium supplementation is not required to maintain serum sodium concentrations during an Ironman triathlon. Br. J. Sports Med. 2006;40:255–259. doi: 10.1136/bjsm.2005.022418.
    1. Cosgrove S.D., Black K.E. Sodium supplementation has no effect on endurance performance during a cycling time-trial in cool conditions: A randomised cross-over trial. J. Int. Soc. Sports Nutr. 2013;10:30. doi: 10.1186/1550-2783-10-30.
    1. Aschenbach W., Ocel J., Craft L., Ward C., Spangenburg E., Williams J. Effect of oral sodium loading on high-intensity arm ergometry in college wrestlers. Med. Sci. Sports Exerc. 2000;32:669–675. doi: 10.1097/00005768-200003000-00018.
    1. Hamouti N., Del Coso J., Ortega J.F., Mora-Rodriguez R. Sweat sodium concentration during exercise in the heat in aerobically trained and untrained humans. Eur. J. Appl. Physiol. 2011;111:2873–2881. doi: 10.1007/s00421-011-1911-6.
    1. Zorbas Y.G., Federenko Y.F., Naexu K.A. Effect of daily hyperhydration on fluid-electrolyte changes in endurance-trained volunteers during prolonged restriction of muscular activity. Biol. Trace Elem. Res. 1995;50:57–78. doi: 10.1007/BF02789149.
    1. Strazzullo P., D’Elia L., Kandala N.B., Cappuccio F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ. 2009;339:b4567. doi: 10.1136/bmj.b4567.
    1. Margaritis I., Tessier F., Prou E., Marconnet P., Marini J.F. Effects of endurance training on skeletal muscle oxidative capacities with and without selenium supplementation. Trace Elem. Med. Biol. 1997;11:37–43. doi: 10.1016/S0946-672X(97)80008-9.
    1. Tessier F., Margaritis I., Richard M.J., Moynot C., Marconnet P. Selenium and training effects on the glutathione system and aerobic performance. Med. Sci. Sports Exerc. 1995;27:390–396. doi: 10.1249/00005768-199503000-00015.
    1. Zamora A.J., Tessier F., Marconnet P., Margaritis I., Marini J.F. Mitochondria changes in human muscle after prolonged exercise, endurance training and selenium supplementation. Eur. J. Appl. Physiol. Occup. Physiol. 1995;71:505–511. doi: 10.1007/BF00238552.
    1. Sun H.J., Rathinasabapathi B., Wu B., Luo J., Pu L.P., Ma L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014;69:148–158. doi: 10.1016/j.envint.2014.04.019.
    1. Nielsen J., Gejl K.D., Hey-Mogensen M., Holmberg H.C., Suetta C., Krustrup P., Elemans C.P.H., Ortenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 2017;595:2839–2847. doi: 10.1113/JP273040.
    1. Savory L.A., Kerr C.J., Whiting P., Finer N., McEneny J., Ashton T. Selenium supplementation and exercise: Effect on oxidant stress in overweight adults. Obesity. 2012;20:794–801. doi: 10.1038/oby.2011.83.
    1. Alfthan G., Eurola M., Ekholm P., Venalainen E.R., Root T., Korkalainen K., Hartikainen H., Salminen P., Hietaniemi V., Aspila P., et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. trace Elem. Med. Biol. 2015;31:142–147. doi: 10.1016/j.jtemb.2014.04.009.
    1. Hughes D.J., Duarte-Salles T., Hybsier S., Trichopoulou A., Stepien M., Aleksandrova K., Overvad K., Tjonneland A., Olsen A., Affret A., et al. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am. J. Clin. Nutr. 2016;104:406–414. doi: 10.3945/ajcn.116.131672.
    1. Alehagen U., Johansson P., Bjornstedt M., Rosen A., Post C., Aaseth J. Relatively high mortality risk in elderly Swedish subjects with low selenium status. Eur. J. Clin. Nutr. 2016;70:91–96. doi: 10.1038/ejcn.2015.92.
    1. Pingitore A., Lima G.P., Mastorci F., Quinones A., Iervasi G., Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition (Burbank, Los Angeles County, Calif.) 2015;31:916–922. doi: 10.1016/j.nut.2015.02.005.
    1. Marmett B., Nunes R.B. Effects of chromium picolinate supplementation on control of metabolic variables: A systematic review. J. Food Nutr. Res. 2016;4:633–639.
    1. Pittler M.H., Stevinson C., Ernst E. Chromium picolinate for reducing body weight: Meta-analysis of randomized trials. International journal of obesity and related metabolic disorders. J. Int. Assoc. Study Obes. 2003;27:522–529. doi: 10.1038/sj.ijo.0802262.
    1. Edwards W., Pringle D., Palfrey T., Anderson D. Effects of chromium picolinate supplementation on body composition in in-season division I intercollegiate female swimmers. Med. Sport. 2012;16:99–103. doi: 10.5604/17342260.1011388.
    1. Kaats G.R., Blum K., Fisher J.A., Adelman J.A. Effects of chromium picolinate supplementation on body composition: A randomized, double-masked, placebo-controlled study. Curr. Ther. Res. 1996;57:747–756. doi: 10.1016/S0011-393X(96)80080-4.
    1. Clancy S.P., Clarkson P.M., DeCheke M.E., Nosaka K., Freedson P.S., Cunningham J.J., Valentine B. Effects of chromium picolinate supplementation on body composition, strength, and urinary chromium loss in football players. Int. J. Sport Nutr. 1994;4:142–153. doi: 10.1123/ijsn.4.2.142.
    1. Hallmark M.A., Reynolds T.H., DeSouza C.A., Dotson C.O., Anderson R.A., Rogers M.A. Effects of chromium and resistive training on muscle strength and body composition. Med. Sci. Sports Exerc. 1996;28:139–144. doi: 10.1097/00005768-199601000-00025.
    1. Lukaski H.C., Bolonchuk W.W., Siders W.A., Milne D.B. Chromium supplementation and resistance training: Effects on body composition, strength, and trace element status of men. Am. J. Clin. Nutr. 1996;63:954–965. doi: 10.1093/ajcn/63.6.954.
    1. Walker L.S., Bemben M.G., Bemben D.A., Knehans A.W. Chromium picolinate effects on body composition and muscular performance in wrestlers. Med. Sci. Sports Exerc. 1998;30:1730–1737. doi: 10.1097/00005768-199812000-00012.
    1. Campbell W.W., Joseph L.J., Davey S.L., Cyr-Campbell D., Anderson R.A., Evans W.J. Effects of resistance training and chromium picolinate on body composition and skeletal muscle in older men. J. Appl. Physiol. 1999;86:29–39. doi: 10.1152/jappl.1999.86.1.29.
    1. Campbell W.W., Joseph L.J., Anderson R.A., Davey S.L., Hinton J., Evans W.J. Effects of resistive training and chromium picolinate on body composition and skeletal muscle size in older women. Int. J. Sport Nutr. Exerc. Metab. 2002;12:125–135. doi: 10.1123/ijsnem.12.2.125.
    1. Livolsi J.M., Adams G.M., Laguna P.L. The effect of chromium picolinate on muscular strength and body composition in women athletes. J. Strength Cond. Res. 2001;15:161–166.
    1. Hasten D.L., Rome E.P., Franks B.D., Hegsted M. Effects of chromium picolinate on beginning weight training students. Int. J. Sport Nutr. 1992;2:343–350. doi: 10.1123/ijsn.2.4.343.
    1. Lefavi R.G., Wilson G.D., Keith R.E., Anderson R.A., Blessing D.L., Hames C.G., McMillan J.L. Lipid-lowering effect of a dietary chromium (III)—Nicotinic acid complex in male athletes. Nutr. Res. 1993;13:239–249. doi: 10.1016/S0271-5317(05)80421-X.
    1. Volek J.S., Silvestre R., Kirwan J.P., Sharman M.J., Judelson D.A., Spiering B.A., Vingren J.L., Maresh C.M., Vanheest J.L., Kraemer W.J. Effects of chromium supplementation on glycogen synthesis after high-intensity exercise. Med. Sci. Sports Exerc. 2006;38:2102–2109. doi: 10.1249/01.mss.0000235353.09061.54.
    1. Vincent J.B. New Evidence against Chromium as an Essential Trace Element. J. Nutr. 2017;147:2212–2219. doi: 10.3945/jn.117.255901.
    1. Nielsen F.H. Update on human health effects of boron. Journal of trace elements in medicine and biology. Organ Soc. Miner. Trace Elem. (GMS) 2014;28:383–387. doi: 10.1016/j.jtemb.2014.06.023.
    1. Ferrando A.A., Green N.R. The effect of boron supplementation on lean body mass, plasma testosterone levels, and strength in male bodybuilders. Int. J. Sport Nutr. 1993;3:140–149. doi: 10.1123/ijsn.3.2.140.
    1. Green N.R., Ferrando A.A. Plasma boron and the effects of boron supplementation in males. Environ. Health Perspect. 1994;102:73–77.
    1. Meacham S.L., Taper L.J., Volpe S.L. Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environ. Health Perspect. 1994;102:79–82.
    1. Meacham S.L., Taper L.J., Volpe S.L. Effect of boron supplementation on blood and urinary calcium, magnesium, and phosphorus, and urinary boron in athletic and sedentary women. Am. J. Clin. Nutr. 1995;61:341–345. doi: 10.1093/ajcn/61.2.341.
    1. Volpe-Snyder S.L., Taper L.J., Meacham S.L. The effect of boron supplementation on bone mineral density and hormonal status in college female athletes. Med. Exerc. Nutr. Health. 1993;2:323–330.
    1. Del Coso J., Gonzalez-Millan C., Salinero J.J., Abian-Vicen J., Areces F., Lledo M., Lara B., Gallo-Salazar C., Ruiz-Vicente D. Effects of oral salt supplementation on physical performance during a half-ironman: A randomized controlled trial. Scand. J. Med. Sci. Sports. 2016;26:156–164. doi: 10.1111/sms.12427.
    1. Barry D.W., Hansen K.C., van Pelt R.E., Witten M., Wolfe P., Kohrt W.M. Acute calcium ingestion attenuates exercise-induced disruption of calcium homeostasis. Med. Sci. Sports Exerc. 2011;43:617–623. doi: 10.1249/MSS.0b013e3181f79fa8.
    1. Sherk V.D., Wherry S.J., Barry D.W., Shea K.L., Wolfe P., Kohrt W.M. Calcium supplementation attenuates disruptions in calcium homeostasis during exercise. Med. Sci. Sports Exerc. 2017;49:1437–1442. doi: 10.1249/MSS.0000000000001239.
    1. Shea B.J., Reeves B.C., Wells G., Thuku M., Hamel C., Moran J., Moher D., Tugwell P., Welch V., Kristjansson E., et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:J4008. doi: 10.1136/bmj.j4008.

Source: PubMed

3
Abonnieren