Efficacy of early goal-directed therapy using FloTrac/EV1000 to improve postoperative outcomes in patients undergoing off-pump coronary artery bypass surgery: a randomized controlled trial

Sirirat Tribuddharat, Thepakorn Sathitkarnmanee, Kriangsak Ngamsaengsirisup, Sanpicha Sornpirom, Sirirat Tribuddharat, Thepakorn Sathitkarnmanee, Kriangsak Ngamsaengsirisup, Sanpicha Sornpirom

Abstract

Background: Early goal-directed therapy (EGDT) using FloTrac reduced length of stay (LOS) in intensive care (ICU) and hospital among patients undergoing coronary artery bypass graft (CABG) with a cardiopulmonary bypass. However, this platform in off-pump CABG (OPCAB) has received scant attention, so we evaluated the efficacy of EGDT using FloTrac/EV1000 as a modality for improving postoperative outcomes in patients undergoing OPCAB.

Methods: Forty patients undergoing OPCAB were randomized to the EV1000 or Control group. The Control group received fluid, inotropic, or vasoactive drugs (at the discretion of the attending anesthesiologist) to maintain a mean arterial pressure 65-90 mmHg; central venous pressure 8-12 mmHg; urine output ≥ 0.5 mL kg-1 h-1; SpO2 > 95%; and hematocrit ≥ 30%. The EV1000 group achieved identical targets using information from the FloTrac/EV1000. The goals included stroke volume variation < 13%; cardiac index (CI) of 2.2-4.0 L min-1 m-2; and systemic vascular resistance index of 1500-2500 dynes s-1 cm-5 m-2.

Results: The EV1000 group had a shorter LOS in ICU (mean difference - 1.3 d, 95% CI - 1.8 to - 0.8; P < 0.001). The ventilator time for both groups was comparable (P = 0.316), but the hospital stay for the EV1000 group was shorter (mean difference - 1.4 d, 95% CI - 2.1 to - 0.6; P < 0.001).

Conclusions: EGDT using FloTrac/EV1000 compared to conventional protocol reduces LOS in ICU and hospital among patients undergoing OPCAB. Trial registration This study was retrospectively registered at www.

Clinicaltrials: gov (NCT04292951) on 3 March 2020.

Keywords: Early goal-directed therapy; Hospital; Intensive care unit; Length of stay; Off-pump coronary artery bypass graft.

Conflict of interest statement

The authors have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
COSORT diagram of the study

References

    1. Verma S, Fedak PW, Weisel RD, Szmitko PE, Badiwala MV, Bonneau D, et al. Off-pump coronary artery bypass surgery: fundamentals for the clinical cardiologist. Circulation. 2004;109(10):1206–1211. doi: 10.1161/01.CIR.0000120292.65143.F5.
    1. Lamy A, Devereaux PJ, Prabhakaran D, Taggart DP, Hu S, Paolasso E, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;366(16):1489–1497. doi: 10.1056/NEJMoa1200388.
    1. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361(19):1827–1837. doi: 10.1056/NEJMoa0902905.
    1. Gaudino M, Angelini GD, Antoniades C, Bakaeen F, Benedetto U, Calafiore AM, et al. Off-pump coronary artery bypass grafting: 30 years of debate. J Am Heart Assoc. 2018;7(16):e009934. doi: 10.1161/JAHA.118.009934.
    1. Kapoor PM, Magoon R, Rawat RS, Mehta Y, Taneja S, Ravi R, et al. Goal-directed therapy improves the outcome of high-risk cardiac patients undergoing off-pump coronary artery bypass. Ann Card Anaesth. 2017;20(1):83–89. doi: 10.4103/0971-9784.197842.
    1. Do QB, Goyer C, Chavanon O, Couture P, Denault A, Cartier R. Hemodynamic changes during off-pump CABG surgery. Eur J Cardiothorac Surg. 2002;21(3):385–390. doi: 10.1016/S1010-7940(02)00009-X.
    1. Kapoor PM, Kakani M, Chowdhury U, Choudhury M, Lakshmy R, Kiran U. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11(1):27–34. doi: 10.4103/0971-9784.38446.
    1. Chong MA, Wang Y, Berbenetz NM, McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35(7):469–483. doi: 10.1097/EJA.0000000000000778.
    1. Giglio M, Manca F, Dalfino L, Brienza N. Perioperative hemodynamic goal-directed therapy and mortality: a systematic review and meta-analysis with meta-regression. Minerva Anestesiol. 2016;82(11):1199–1213.
    1. Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE. Assessing fluid responsiveness during open chest conditions. Br J Anaesth. 2005;94(3):318–323. doi: 10.1093/bja/aei043.
    1. Sander M, Spies CD, Berger K, Grubitzsch H, Foer A, Kramer M, et al. Prediction of volume response under open-chest conditions during coronary artery bypass surgery. Crit Care. 2007;11(6):R121. doi: 10.1186/cc6181.
    1. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–429. doi: 10.1001/archsurg.1995.01430040085019.
    1. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90(5):1052–1059. doi: 10.1097/00000539-200005000-00010.
    1. McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329(7460):258. doi: 10.1136/bmj.38156.767118.7C.
    1. Tribuddharat S, Sathitkarnmanee T, Ngamsangsirisup K, Nongnuang K. Efficacy of intraoperative hemodynamic optimization using FloTrac/EV1000 platform for early goal-directed therapy to improve postoperative outcomes in patients undergoing coronary artery bypass graft with cardiopulmonary bypass: a randomized controlled trial. Med Devices (Auckl) 2021;14:201–209.
    1. Smetkin AA, Kirov MY, Kuzkov VV, Lenkin AI, Eremeev AV, Slastilin VY, et al. Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand. 2009;53(4):505–514. doi: 10.1111/j.1399-6576.2008.01855.x.
    1. Cao Y, Wu H, Zhang L, Cheng X, Zhao Q, Liu X, et al. Effects of goal-directed hemodynamic management therapy on prognosis of patients undergoing off-pump coronary artery bypass surgery. J Med Postgrad. 2019;12:518–522.
    1. Slagt C. Is Off-pump cardiac surgery ready for goal-directed therapy? Ann Card Anaesth. 2017;20(3):387. doi: 10.4103/aca.ACA_56_17.
    1. Titinger DP, Lisboa LA, Matrangolo BL, Dallan LR, Dallan LA, Trindade EM, et al. Cardiac surgery costs according to the preoperative risk in the Brazilian public health system. Arq Bras Cardiol. 2015;105(2):130–138.
    1. Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth. 2013;110(4):510–517. doi: 10.1093/bja/aet020.
    1. Giglio M, Dalfino L, Puntillo F, Rubino G, Marucci M, Brienza N. Haemodynamic goal-directed therapy in cardiac and vascular surgery. A systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2012;15(5):878–87. doi: 10.1093/icvts/ivs323.
    1. Cannesson M, Attof Y, Rosamel P, Joseph P, Bastien O, Lehot JJ. Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements. Eur J Anaesthesiol. 2007;24(10):832–839. doi: 10.1017/S0265021507001056.
    1. Lin SY, Chou AH, Tsai YF, Chang SW, Yang MW, Ting PC, et al. Evaluation of the use of the fourth version FloTrac system in cardiac output measurement before and after cardiopulmonary bypass. J Clin Monit Comput. 2018;32(5):807–815. doi: 10.1007/s10877-017-0071-6.
    1. Kusaka Y, Ohchi F, Minami T. Evaluation of the fourth-generation FloTrac/Vigileo system in comparison with the intermittent bolus thermodilution method in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(4):953–960. doi: 10.1053/j.jvca.2018.06.017.
    1. Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91(2):170–174. doi: 10.1093/bja/aeg132.
    1. Vereecke HE, Proost JH, Heyse B, Eleveld DJ, Katoh T, Luginbuhl M, et al. Interaction between nitrous oxide, sevoflurane, and opioids: a response surface approach. Anesthesiology. 2013;118(4):894–902. doi: 10.1097/ALN.0b013e3182860486.
    1. Sebel PS, Glass PS, Fletcher JE, Murphy MR, Gallagher C, Quill T. Reduction of the MAC of desflurane with fentanyl. Anesthesiology. 1992;76(1):52–59. doi: 10.1097/00000542-199201000-00008.

Source: PubMed

3
Abonnieren