Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes

Lauren M Sparks, Cedric Moro, Barbara Ukropcova, Sudip Bajpeyi, Anthony E Civitarese, Matthew W Hulver, G Hege Thoresen, Arild C Rustan, Steven R Smith, Lauren M Sparks, Cedric Moro, Barbara Ukropcova, Sudip Bajpeyi, Anthony E Civitarese, Matthew W Hulver, G Hege Thoresen, Arild C Rustan, Steven R Smith

Abstract

Objective: Disturbances in lipid metabolism are strongly associated with insulin resistance and type 2 diabetes (T2D). We hypothesized that activation of cAMP/PKA and calcium signaling pathways in cultured human myotubes would provide further insight into regulation of lipid storage, lipolysis, lipid oxidation and insulin responsiveness.

Methods: Human myoblasts were isolated from vastus lateralis, purified, cultured and differentiated into myotubes. All cells were incubated with palmitate during differentiation. Treatment cells were pulsed 1 hour each day with forskolin and ionomycin (PFI) during the final 3 days of differentiation to activate the cAMP/PKA and calcium signaling pathways. Control cells were not pulsed (control). Mitochondrial content, (14)C lipid oxidation and storage were measured, as well as lipolysis and insulin-stimulated glycogen storage. Myotubes were stained for lipids and gene expression measured.

Results: PFI increased oxidation of oleate and palmitate to CO(2) (p<0.001), isoproterenol-stimulated lipolysis (p = 0.01), triacylglycerol (TAG) storage (p<0.05) and mitochondrial DNA copy number (p = 0.01) and related enzyme activities. Candidate gene and microarray analysis revealed increased expression of genes involved in lipolysis, TAG synthesis and mitochondrial biogenesis. PFI increased the organization of lipid droplets along the myofibrillar apparatus. These changes in lipid metabolism were associated with an increase in insulin-mediated glycogen storage (p<0.001).

Conclusions: Activation of cAMP/PKA and calcium signaling pathways in myotubes induces a remodeling of lipid droplets and functional changes in lipid metabolism. These results provide a novel pharmacological approach to promote lipid metabolism and improve insulin responsiveness in myotubes, which may be of therapeutic importance for obesity and type 2 diabetes.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Fatty acid oxidation.
Figure 1. Fatty acid oxidation.
Cultured myotubes were incubated with 100 µM of [1-14C] oleate (A) or [1-14C] palmitate (B) for 3 h, and radiolabel incorporation into CO2 was determined as a measure of complete fat oxidation (FAO). Radiolabel incorporation into acid soluble molecules (ASM) was measured to assess incomplete FAO. The ratio of CO2 to ASM was calculated for oleate (C) and palmitate (D). Data are expressed as mean ± SEM of 4 separate experiments. ** p<0.01, *** p<0.001 versus control.
Figure 2. Mitochondrial content and enzymes activity.
Figure 2. Mitochondrial content and enzymes activity.
(A) Mitochondrial content determined by mtDNA copy number. (B) Mitochondrial content determined by Mitotracker Green FM. (C) β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity adjusted for protein content. (D) Citrate synthase (CS) activity adjusted for protein content. Data are expressed as mean ± SEM of 4 separate experiments. ** p

Figure 3. Confocal microscopy of lipid droplets.

Figure 3. Confocal microscopy of lipid droplets.

Lipid droplets were stained with Bodipy 493/503 (green)…

Figure 3. Confocal microscopy of lipid droplets.
Lipid droplets were stained with Bodipy 493/503 (green) and nuclei were stained with DAPI (blue). Note the increase in the organization of lipid droplets along the myofibrillar apparatus in panels B (20×) and D (40×) upon PFI treatment.

Figure 4. Lipid storage and lipolytic capacity.

Figure 4. Lipid storage and lipolytic capacity.

(A) Cultured myotubes were incubated with 100 µM…

Figure 4. Lipid storage and lipolytic capacity.
(A) Cultured myotubes were incubated with 100 µM [1-14C] oleate for 3 h, then the cells were harvested and total lipid extracted. Total lipid synthesis was measured as incorporation of radiolabel into total cellular lipids. (B) Lipid intermediates species such as phospholipids (PL), diacylglycerol (DAG), and triacylglycerol (TAG) rates of synthesis were measured by thin-layer chromatography. (C) Lipolysis measured as glycerol release was determined by subtracting baseline values to values during the stimulation with 1 µM of isoproterenol (a non-selective β-adrenergic agonist). The graph represents the changes in lipolysis at baseline in response to isoproterenol in control and PFI conditions. Data are expressed as mean ± SEM of 4 separate experiments. * p<0.05, ** p<0.01 versus control.

Figure 5. Glucose metabolism and insulin sensitivity.

Figure 5. Glucose metabolism and insulin sensitivity.

(A) Incorporation of [U- 14 C] glucose into…

Figure 5. Glucose metabolism and insulin sensitivity.
(A) Incorporation of [U-14C] glucose into glycogen was measured in either the absence (open bar) or the presence (black bar) of 100 nM of insulin. ** p<0.01 versus baseline, † p<0.05 versus control. (B) Insulin-stimulated glycogen storage was measured by the change in glycogen storage at baseline in response to insulin and used as a marker of insulin responsiveness in this model. Data are expressed as mean ± SEM of 4 separate experiments. ** p<0.01 versus control.
Figure 3. Confocal microscopy of lipid droplets.
Figure 3. Confocal microscopy of lipid droplets.
Lipid droplets were stained with Bodipy 493/503 (green) and nuclei were stained with DAPI (blue). Note the increase in the organization of lipid droplets along the myofibrillar apparatus in panels B (20×) and D (40×) upon PFI treatment.
Figure 4. Lipid storage and lipolytic capacity.
Figure 4. Lipid storage and lipolytic capacity.
(A) Cultured myotubes were incubated with 100 µM [1-14C] oleate for 3 h, then the cells were harvested and total lipid extracted. Total lipid synthesis was measured as incorporation of radiolabel into total cellular lipids. (B) Lipid intermediates species such as phospholipids (PL), diacylglycerol (DAG), and triacylglycerol (TAG) rates of synthesis were measured by thin-layer chromatography. (C) Lipolysis measured as glycerol release was determined by subtracting baseline values to values during the stimulation with 1 µM of isoproterenol (a non-selective β-adrenergic agonist). The graph represents the changes in lipolysis at baseline in response to isoproterenol in control and PFI conditions. Data are expressed as mean ± SEM of 4 separate experiments. * p<0.05, ** p<0.01 versus control.
Figure 5. Glucose metabolism and insulin sensitivity.
Figure 5. Glucose metabolism and insulin sensitivity.
(A) Incorporation of [U-14C] glucose into glycogen was measured in either the absence (open bar) or the presence (black bar) of 100 nM of insulin. ** p<0.01 versus baseline, † p<0.05 versus control. (B) Insulin-stimulated glycogen storage was measured by the change in glycogen storage at baseline in response to insulin and used as a marker of insulin responsiveness in this model. Data are expressed as mean ± SEM of 4 separate experiments. ** p<0.01 versus control.

References

    1. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104:12587–12594.
    1. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol. 2002;90:11G–18G.
    1. Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341:240–246.
    1. Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes. 2005;54:1640–1648.
    1. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51:2005–2011.
    1. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322:223–228.
    1. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. Annu Rev Nutr. 2002;22:325–346.
    1. Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension. 2005;45:828–833.
    1. Goodpaster BH, Kelley DE. Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus? Curr Diab Rep. 2002;2:216–222.
    1. Kelley DE, Goodpaster BH. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care. 2001;24:933–941.
    1. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006;86:205–243.
    1. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond) 2005;29(Suppl 2):S111–115.
    1. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48:1600–1606.
    1. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86:5755–5761.
    1. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–176.
    1. Baar K. Involvement of PPARgamma co-activator-1, nuclear respiratory factors 1 and 2, and PPARalpha in the adaptive response to endurance exercise. Proc Nutr Soc. 2004;63:269–273.
    1. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb J. 2002;16:1879–1886.
    1. Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90:1137–1157.
    1. Watt MJ, Steinberg GR, Chen ZP, Kemp BE, Febbraio MA. Fatty acids stimulate AMP-activated protein kinase and enhance fatty acid oxidation in L6 myotubes. J Physiol. 2006;574:139–147.
    1. Fediuc S, Gaidhu MP, Ceddia RB. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J Lipid Res. 2006;47:412–420.
    1. Ukropcova B, McNeil M, Sereda O, de Jonge L, Xie H, et al. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. J Clin Invest. 2005;115:1934–1941.
    1. Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, et al. Skeletal Muscle NAMPT is Induced by Exercise in Humans. Am J Physiol Endocrinol Metab 2009
    1. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1392–1399.
    1. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4:75–87.
    1. Sparks LM, Xie H, Koza RA, Mynatt RL, Hulver MW, et al. A High-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle. Diabetes. 2005;54:1926–1933.
    1. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005;2:251–261.
    1. Boschmann M, Engeli S, Moro C, Luedtke A, Adams F, et al. LMNA mutations, skeletal muscle lipid metabolism, and insulin resistance. J Clin Endocrinol Metab. 2010;95:1634–1643.
    1. Hebert TL, Wu X, Yu G, Goh BC, Halvorsen YD, et al. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis. J Tissue Eng Regen Med. 2009;3:553–561.
    1. Ohsaki Y, Maeda T, Fujimoto T. Fixation and permeabilization protocol is critical for the immunolabeling of lipid droplet proteins. Histochem Cell Biol. 2005;124:445–452.
    1. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210.
    1. Ikeo K, Ishi-i J, Tamura T, Gojobori T, Tateno Y. CIBEX: center for information biology gene expression database. C R Biol. 2003;326:1079–1082.
    1. Votruba SB, Atkinson RL, Schoeller DA. Prior exercise increases dietary oleate, but not palmitate oxidation. Obes Res. 2003;11:1509–1518.
    1. Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282:18793–18799.
    1. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, et al. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. 2007;282:194–199.
    1. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1271–1278.
    1. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801.
    1. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, et al. Regulation of Muscle Fiber Type and Running Endurance by PPARdelta. PLoS Biol. 2004;2:e294.
    1. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.
    1. Gaster M, Rustan AC, Beck-Nielsen H. Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes. 2005;54:648–656.
    1. Hsieh K, Huang AH. Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol. 2004;136:3427–3434.
    1. Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, et al. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res. 2006;47:2392–2399.
    1. Langfort J, Ploug T, Ihlemann J, Holm C, Galbo H. Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle. Biochem J. 2000;351:207–214.
    1. Langfort J, Ploug T, Ihlemann J, Saldo M, Holm C, et al. Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle. Biochem J. 1999;340(Pt 2):459–465.
    1. Watt MJ, Heigenhauser GJ, Spriet LL. Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle. J Physiol. 2003;547:301–308.
    1. Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 2006;3:309–319.
    1. Mairal A, Langin D, Arner P, Hoffstedt J. Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity. Diabetologia. 2006;49:1629–1636.
    1. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–1386.
    1. Alsted TJ, Nybo L, Schweiger M, Fledelius C, Jacobsen P, et al. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am J Physiol Endocrinol Metab. 2009;296:E445–453.
    1. Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007;117:1690–1698.
    1. Liu L, Zhang Y, Chen N, Shi X, Tsang B, et al. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117:1679–1689.

Source: PubMed

3
Abonnieren