Potential of Moringa oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations: A Systematic Review of Animal and Human Studies

Esther Nova, Noemí Redondo-Useros, Rosa M Martínez-García, Sonia Gómez-Martínez, Ligia E Díaz-Prieto, Ascensión Marcos, Esther Nova, Noemí Redondo-Useros, Rosa M Martínez-García, Sonia Gómez-Martínez, Ligia E Díaz-Prieto, Ascensión Marcos

Abstract

Moringa oleifera (MO) is a multipurpose plant consumed as food and known for its medicinal uses, among others. Leaves, seeds and pods are the main parts used as food or food supplements. Nutritionally rich and with a high polyphenol content in the form of phenolic acids, flavonoids and glucosinolates, MO has been shown to exert numerous in vitro activities and in vivo effects, including hypoglycemic activity. A systematic search was carried out in the PubMed database and reference lists on the effects of MO on glucose metabolism. Thirty-three animal studies and eight human studies were included. Water and organic solvent extracts of leaves and, secondly, seeds, have been extensively assayed in animal models, showing the hypoglycemic effect, both under acute conditions and in long-term administrations and also prevention of other metabolic changes and complications associated to the hyperglycemic status. In humans, clinical trials are scarce, with variable designs and testing mainly dry leaf powder alone or mixed with other foods or MO aqueous preparations. Although the reported results are encouraging, especially those from postprandial studies, more human studies are certainly needed with more stringent inclusion criteria and a sufficient number of diabetic or prediabetic subjects. Moreover, trying to quantify the bioactive substances administered with the experimental material tested would facilitate comparison between studies.

Keywords: Moringa oleifera; animal studies; antioxidant enzymes; diabetes mellitus; fasting glucose; glucose tolerance; human studies; lipid metabolism.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of the selection of the animal and human studies included. DM: diabetes mellitus.

References

    1. Gandji K., Chadare F., Idohou R., Salako V., Assogbadjo A., Kakaï R.G. Status and utilisation of Moringa oleifera Lam: A review. Afr. Crop. Sci. J. 2018;26:137–156. doi: 10.4314/acsj.v26i1.10.
    1. Fejer J., Kron I., Pellizzeri V., Pľuchtová M., Eliašová A., Campone L., Gervasi T., Bartolomeo G., Cicero N., Babejová A., et al. First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa Oleifera Lam. from Caribbean Island of Saint Lucia. Plants. 2019;8:537. doi: 10.3390/plants8120537.
    1. Pérez A., Sánchez T., Armengol N., Reyes F. Características y potencialidades de Moringa oleifera, Lamark: Una alternativa para la alimentación animal. Pastos Forrajes. 2010;33:1.
    1. Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J., Bertoli S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015;16:12791–12835. doi: 10.3390/ijms160612791.
    1. Aluko O., Brai M.R., Adelore A.O. Evaluation of sensory attributes of snack from maize-moringa seed flour blends. Int. J. Nut. Food Eng. 2013;7:944–946.
    1. Ogunsina B.S., Radha C., Indrani D. Quality characteristics of bread and cookies enriched with debittered Moringa oleifera seed flour. Int. J. Food Sci. Nutr. 2010;62:185–194. doi: 10.3109/09637486.2010.526928.
    1. Anwar F., Latif S., Ashraf M., Gilani A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2006;21:17–25. doi: 10.1002/ptr.2023.
    1. Ogunsina B.S., Indira T.N., Bhatnagar A.S., Radha C., Debnath S., Gopala Krishna A.G. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J. Food Sci. Technol. 2014;51:503–510. doi: 10.1007/s13197-011-0519-5.
    1. FDA . Food and Drug Administration Agency Response Letter 2001. G.R.A Notice. 000069. FDA; Washington, DC, USA: 2001.
    1. Fahey J.W., Wade K., Stephenson K.K., Shi Y., Liu H., Panjwani A.A., Warrick C.R., Olson M.E. A Strategy to Deliver Precise Oral Doses of the Glucosinolates or Isothiocyanates from Moringa oleifera Leaves for Use in Clinical Studies. Nutrients. 2019;11:1547. doi: 10.3390/nu11071547.
    1. Saini R.K., Sivanesan I., Keum Y.-S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016;6:203. doi: 10.1007/s13205-016-0526-3.
    1. Leone A., Bertoli S., Di Lello S., Bassoli A., Ravasenghi S., Borgonovo G., Forlani F., Battezzati A. Effect of Moringa oleifera Leaf Powder on Postprandial Blood Glucose Response: In Vivo Study on Saharawi People Living in Refugee Camps. Nutrients. 2018;10:1494. doi: 10.3390/nu10101494.
    1. Olson M.E., Sankaran R.P., Fahey J.W., Grusak M.A., Odee D., Nouman W. Leaf Protein and Mineral Concentrations across the “Miracle Tree” Genus Moringa. PLoS ONE. 2016;11:e0159782. doi: 10.1371/journal.pone.0159782.
    1. Su B., Chen X. Current Status and Potential of Moringa oleifera Leaf as an Alternative Protein Source for Animal Feeds. Front. Vet. Sci. 2020;7:53. doi: 10.3389/fvets.2020.00053.
    1. Rébufa C., Pany I., Bombarda I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents. Food Chem. 2018;261:311–321. doi: 10.1016/j.foodchem.2018.04.066.
    1. Busani M., Patrick J.M., Arnold H., Voster M., Moyo B., Masika P., Hugo A., Muchenje V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011;10:12925–12933. doi: 10.5897/AJB10.1599.
    1. Stohs S.J., Hartman M.J. Review of the Safety and Efficacy of Moringa oleifera. Phytother. Res. 2015;29:796–804. doi: 10.1002/ptr.5325.
    1. Witt K.A. The Nutrient Content of Moringa oleifera Leaves. Echo note Nº1. [(accessed on 22 June 2020)];2013 Available online: .
    1. Kumssa D.B., Joy E.J., Young S.D., Odee D.W., Broadley M.R., Broadley M.R. Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition. PLoS ONE. 2017;12:e0175503. doi: 10.1371/journal.pone.0175503.
    1. Luetragoon T., Sranujit R.P., Noysang C., Thongsri Y., Potup P., Suphrom N., Nuengchamnong N., Usuwanthim K. Bioactive Compounds in Moringa oleifera Lam. Leaves Inhibit the Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Human Monocyte-Derived Macrophages. Molecules. 2020;25:191. doi: 10.3390/molecules25010191.
    1. Kumar S., Bhattacharya A., Tiwari P., Sahu P.K. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied Sci. 2018;10:181–191. doi: 10.4103/JPBS.JPBS_126_18.
    1. Aekthammarat D., Pannangpetch P., Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine. 2019;54:9–16. doi: 10.1016/j.phymed.2018.10.023.
    1. Arulselvan P., Tan W.S., Gothai S., Muniandy K., Fakurazi S., Esa N.M., Alarfaj A.A., Kumar S.S. Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages. Molecules. 2016;21:1452. doi: 10.3390/molecules21111452.
    1. Kou X., Li B., Olayanju J.B., Drake J.M., Chena N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients. 2018;10:343. doi: 10.3390/nu10030343.
    1. Linares Rivero C., Quiñones-Gálvez J., Pérez Martínez A., Carvajal Ortiz C., Rivas Paneca M., Cid Valdéz G.A., Pérez Gómez L., La Rosa González S., Capdesuñer Ruiz Y.K. Obtaining phenolic extracts from the leaf of Moringa oleifera Lam by using different extraction methods. Veg. Biotechnol. 2018;18:47–56.
    1. Dou Z., Chen C., Fu X. Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from Moringa oleifera Lam. leaves during digestion and fermentation in vitro. Food Funct. 2019;10:5070–5079. doi: 10.1039/C9FO00793H.
    1. Vergara-Jimenez M., AlMatrafi M.M., Fernandez M.L. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants. 2017;6:91. doi: 10.3390/antiox6040091.
    1. Waterman C., Rojas-Silva P., Tumer T.B., Kuhn P., Richard A.J., Wicks S., Stephens J.M., Wang Z., Mynatt R., Cefalu W., et al. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol. Nutr. Food Res. 2015;59:1013–1024. doi: 10.1002/mnfr.201400679.
    1. Devisetti R., Sreerama Y.N., Bhattacharya S. Processing effects on bioactive components and functional properties of moringa leaves: Development of a snack and quality evaluation. J. Food Sci. Technol. 2015;53:649–657. doi: 10.1007/s13197-015-1962-5.
    1. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843.
    1. Tabák A.G., Herder C., Rathmann W., Brunner E.J., Kivimaki M. Prediabetes: A high-risk state for diabetes development. Lancet. 2012;379:2279–2290. doi: 10.1016/S0140-6736(12)60283-9.
    1. Larkin A.T., Hoffman C., Stevens A., Douglas A., Bloomgarden Z. Determinants of adherence to diabetes treatment. J. Diabetes. 2015;7:864–871. doi: 10.1111/1753-0407.12264.
    1. Coskun O., Kanter M., Korkmaz A., Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 2005;51:117–123. doi: 10.1016/j.phrs.2004.06.002.
    1. Tadera K., Minami Y., Takamatsu K., Matsuoka T. Inhibition of .ALPHA.-Glucosidase and .ALPHA.-Amylase by Flavonoids. J. Nutr. Sci. Vitaminol. 2006;52:149–153. doi: 10.3177/jnsv.52.149.
    1. Oboh G., Agunloye O., Adefegha S.A., Akinyemi A., Ademiluyi A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol. 2015;26 doi: 10.1515/jbcpp-2013-0141.
    1. Bin Azad S., Ansari P., Azam S., Hossain S.M., Shahid M.I.-B., Hasan M., Hannan J. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep. 2017;37 doi: 10.1042/bsr20170059.
    1. Hanhineva K., Törrönen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkänen H., Poutanen K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010;11:1365–1402. doi: 10.3390/ijms11041365.
    1. Ader P., Blöck M., Pietzsch S., Wolffram S. Interaction of quercetin glucosides with the intestinal sodium/glucose co-transporter (SGLT-1) Cancer Lett. 2001;162:175–180. doi: 10.1016/S0304-3835(00)00645-5.
    1. Ndong M., Uehara M., Katsumata S.-I., Suzuki K. Effects of Oral Administration of Moringa oleifera Lam on Glucose Tolerance in Goto-Kakizaki and Wistar Rats. J. Clin. Biochem. Nutr. 2007;40:229–233. doi: 10.3164/jcbn.40.229.
    1. Villarruel-Lopez A., La Mora D.A.L.-D., Vázquez-Paulino O.D., Puebla-Mora A.G., Torres-Vitela M.R., Guerrero-Quiroz L.A., Nuño K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med. 2018;18:127. doi: 10.1186/s12906-018-2180-2.
    1. Oboh G., Oyeleye S.I., Akintemi O.A., Olasehinde T.A. Moringa oleifera supplemented diet modulates nootropic-related biomolecules in the brain of STZ-induced diabetic rats treated with acarbose. Metab. Brain Dis. 2018;33:457–466. doi: 10.1007/s11011-018-0198-2.
    1. Al-Malki A.L., El Rabey H.A. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats. Biomed. Res. Int. 2015;2015:1–13. doi: 10.1155/2015/381040.
    1. Khan W., Parveen R., Chester K., Parveen S., Ahmad S. Hypoglycemic Potential of Aqueous Extract of Moringa oleifera Leaf and In Vivo GC-MS Metabolomics. Front. Pharmacol. 2017;8 doi: 10.3389/fphar.2017.00577.
    1. Jaiswal L., Rai P.K., Kumar A., Mehta S., Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol. 2009;123:392–396. doi: 10.1016/j.jep.2009.03.036.
    1. Fombang E.N., Saa R.W. Antihyperglycemic Activity of Moringa oleifera Lam Leaf Functional Tea in Rat Models and Human Subjects. Food Nutr. Sci. 2016;7:1021–1032. doi: 10.4236/fns.2016.711099.
    1. Eldaim M.A.A., Elrasoul A.S.A., Elaziz S.A.A., Shaban A. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem. Cell Biol. 2017;95:524–530. doi: 10.1139/bcb-2016-0256.
    1. El Latif A.A., Bialy B.E.S.E., Mahboub H.D., Eldaim M.A. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression. Biochem. Cell Biol. 2014;92:413–419. doi: 10.1139/bcb-2014-0081.
    1. Adepoju-Bello A.A., Jolayemi O.M., Ehianeta T.S., Ayoola G.A. Preliminary phytochemical screening, antioxidant and antihyperglycaemic activity of Moringa oleifera leaf extracts. Pak. J. Pharm. Sci. 2017;30:2217–2222.
    1. Tuorkey M.J. Effects of Moringa oleifera aqueous leaf extract in alloxan induced diabetic mice. Interv. Med. Appl. Sci. 2016;8:109–117. doi: 10.1556/1646.8.2016.3.7.
    1. Yassa H.D., Tohamy A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014;116:844–854. doi: 10.1016/j.acthis.2014.02.002.
    1. Gupta S.K., Kumar B., Srinivasan B., Nag T.C., Srivastava S., Saxena R., Aggarwal A. Retinoprotective Effects of Moringa oleifera via Antioxidant, Anti-Inflammatory, and Anti-Angiogenic Mechanisms in Streptozotocin-Induced Diabetic Rats. J. Ocul. Pharmacol. Ther. 2013;29:419–426. doi: 10.1089/jop.2012.0089.
    1. Mohamed M.A., Ahmed M.A., El Sayed R.A. Molecular effects of Moringa leaf extract on insulin resistance and reproductive function in hyperinsulinemic male rats. J. Diabetes Metab. Disord. 2019;18:487–494. doi: 10.1007/s40200-019-00454-7.
    1. Paula P.C., Sousa D.O.B., Oliveira J.T.A., Carvalho A.F.U., Alves B.G.T., Pereira M.L., Farias D.F., Viana M.P., Santos F.A., Morais T.C., et al. A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules. 2017;22:271. doi: 10.3390/molecules22020271.
    1. Joung H., Kim B., Park H., Lee K., Kim H.-H., Sim H.-C., Do H.-J., Hyun C.-K., Do M.-S. Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice. J. Med. Food. 2017;20:439–447. doi: 10.1089/jmf.2016.3860.
    1. Olayaki L.A., Irekpita J.E., Yakubu M.T., Ojo O. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2015;26 doi: 10.1515/jbcpp-2014-0129.
    1. Jaja-Chimedza A., Zhang L., Wolff K., Graf B.L., Kühn P., Moskal K., Carmouche R., Newman S., Salbaum J.M., Raskin I. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J. Funct. Foods. 2018;47:376–385. doi: 10.1016/j.jff.2018.05.056.
    1. Omodanisi E.I., Aboua Y.G., Oguntibeju O.O. Assessment of the Anti-Hyperglycaemic, Anti-Inflammatory and Antioxidant Activities of the Methanol Extract of Moringa Oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules. 2017;22:439. doi: 10.3390/molecules22040439.
    1. Omodanisi E.I., Aboua Y.G., Chegou N.N., Oguntibeju O.O. Hepatoprotective, Antihyperlipidemic and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacogn. Res. 2017;9:182–187.
    1. Aju B., Rajalakshmi R., Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon. 2019;5:e02935. doi: 10.1016/j.heliyon.2019.e02935.
    1. Gupta R., Mathur M., Bajaj V.K., Katariya P., Yadav S., Kamal R., Gupta R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes. 2012;4:164–171. doi: 10.1111/j.1753-0407.2011.00173.x.
    1. Sánchez-Muñoz M.A., Solana M.A.V., Almazán M.I.C., Flores-Herrera O., Esparza-Perusquía M., Olvera-Sanchez S., García-Arenas G., Avitia-Domínguez C., Tellez-Valencia A., Sierra-Campos E. Streptozotocin-Induced Adaptive Modification of Mitochondrial Supercomplexes in Liver of Wistar Rats and the Protective Effect of Moringa oleifera Lam. Biochem. Res. Int. 2018;2018:1–15. doi: 10.1155/2018/5681081.
    1. Tang Y., Choi E.-J., Han W.C., Oh M., Kim J., Hwang J.-Y., Park P.-J., Moon S.-H., Kim Y.-S., Kim E.-K. Moringa oleifera from Cambodia Ameliorates Oxidative Stress, Hyperglycemia, and Kidney Dysfunction in Type 2 Diabetic Mice. J. Med. Food. 2017;20:502–510. doi: 10.1089/jmf.2016.3792.
    1. Omabe M., Nwudele C., Omabe K.N., Okorocha A.E. Anion Gap Toxicity in Alloxan Induced Type 2 Diabetic Rats Treated with Antidiabetic Noncytotoxic Bioactive Compounds of Ethanolic Extract of Moringa oleifera. J. Toxicol. 2014;2014:1–7. doi: 10.1155/2014/406242.
    1. Kar A., Choudhary B.K., Bandyopadhyay N.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol. 2003;84:105–108. doi: 10.1016/S0378-8741(02)00144-7.
    1. Olurishe C., Kwanashie H., Zezi A., Danjuma N., Mohammed B. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model. J. Ethnopharmacol. 2016;194:895–903. doi: 10.1016/j.jep.2016.10.065.
    1. Raafat K., Hdaib F. Neuroprotective effects of Moringa oleifera: Bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model. Chin. J. Integr. Med. 2017:1–10. doi: 10.1007/s11655-017-2758-4.
    1. Bao Y., Xiao J., Weng Z., Lu X., Shen X., Wang F. A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chem. 2020;311:125948. doi: 10.1016/j.foodchem.2019.125948.
    1. Wang F., Zhong H.-H., Chen W.-K., Liu Q.-P., Li C., Zheng Y., Peng G.-P. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat. Prod. Res. 2016;31:1869–1874. doi: 10.1080/14786419.2016.1263846.
    1. Ahmad J., Khan I., Johnson S.K., Alam I., Din Z.U. Effect of Incorporating Stevia and Moringa in Cookies on Postprandial Glycemia, Appetite, Palatability, and Gastrointestinal Well-Being. J. Am. Coll. Nutr. 2017;37:133–139. doi: 10.1080/07315724.2017.1372821.
    1. Taweerutchana R., Lumlerdkij N., Vannasaeng S., Akarasereenont P., Sriwijitkamol A. Effect of Moringa oleifera Leaf Capsules on Glycemic Control in Therapy-Naïve Type 2 Diabetes Patients: A Randomized Placebo Controlled Study. Evid. Based Complement. Altern. Med. 2017;2017:1–6. doi: 10.1155/2017/6581390.
    1. Kushwaha S., Chawla P., Kochhar A. Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J. Food Sci. Technol. 2012;51:3464–3469. doi: 10.1007/s13197-012-0859-9.
    1. Kumari D.J. Hypoglycemic effect of Moringa oleifera and Azadirachta indica in type-2 diabetes. Bioscan. 2010;5:211–214.
    1. Giridhari V.A., Malathi D., Geetha K. Anti diabetic property of drumstick (Moringa oleifera) leaf tablets. Int. J. Health Nutr. 2011;2:1–5.
    1. Anthanont P., Lumlerdkij N., Akarasereenont P., Vannasaeng S., Sriwijitkamol A. Moringa oleifera Leaf Increases Insulin Secretion after Single Dose Administration: A Preliminary Study in Healthy Subjects. J. Med. Assoc. Thail. 2016;99:308–313.
    1. Muhammad A.A., Arulselvan P., Cheah P.S., Abas F., Fakurazi S. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Des. Dev. Ther. 2016;10:1715–1730. doi: 10.2147/DDDT.S96968.
    1. Jaiswal D., Rai P.K., Mehta S., Chatterji S., Shukla S., Rai D.K., Sharma G., Sharma B., Khair S., Watal G. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 2013;6:426–432. doi: 10.1016/S1995-7645(13)60068-1.
    1. Gheibi S., Kashfi K., Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed. Pharmacother. 2017;95:605–613. doi: 10.1016/j.biopha.2017.08.098.
    1. King A.J.F. The use of animal models in diabetes research. Br. J. Pharmacol. 2012;166:877–894. doi: 10.1111/j.1476-5381.2012.01911.x.
    1. Reed M., Meszaros K., Entes L., Claypool M., Pinkett J., Gadbois T., Reaven G. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism. 2000;49:1390–1394. doi: 10.1053/meta.2000.17721.
    1. Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703.
    1. Asiedu-Gyekye I.J., Frimpong-Manso S., Awortwe C., Antwi D.A., Nyarko A.K. Micro- and Macroelemental Composition and Safety Evaluation of the Nutraceutical Moringa oleifera Leaves. J. Toxicol. 2014;2014:1–13. doi: 10.1155/2014/786979.
    1. Dhakad A.K., Ikram M., Sharma S., Khan S., Pandey V.V., Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Res. 2019;33:2870–2903. doi: 10.1002/ptr.6475.
    1. Falowo A.B., Mukumbo F.E., Idamokoro E.M., Lorenzo J.M., Afolayan A.J., Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018;106:317–334. doi: 10.1016/j.foodres.2017.12.079.
    1. Ajibade T.O., Arowolo R., Olayemi F. Phytochemical screening and toxicity studies on the methanol extract of the seeds of Moringa oleifera. J. Complement. Integr. Med. 2013;10:11–16. doi: 10.1515/jcim-2012-0015.
    1. Davison G.W., George L., Jackson S.K., Young I.S., Davies B., Bailey D.M., Peters J.R., Ashton T. Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus. Free. Radic. Biol. Med. 2002;33:1543–1551. doi: 10.1016/S0891-5849(02)01090-0.
    1. Newsholme P., Cruzat V.F., Keane K.N., Carlessi R., De Bittencourt P.I.H., De Bittencourt P.I.H. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016;473:4527–4550. doi: 10.1042/BCJ20160503C.

Source: PubMed

3
Abonnieren