Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view

Wibke Schulte, Jürgen Bernhagen, Richard Bucala, Wibke Schulte, Jürgen Bernhagen, Richard Bucala

Abstract

Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis.

Figures

Figure 1
Figure 1
Initiation of the immune response following infection. Immune cells of the innate immune system recognize invading pathogens via Toll-like receptors (TLRs). The binding of pathogen-associated molecular patterns (PAMPs), such as peptidoglycan, lipopolysaccharide (LPS), or flagellin, to TLRs initiates signal transduction cascades that lead to the activation of nuclear factor κB (NF-κB). NF-κB is subsequently translocated into the nucleus where it induces the expression of cytokines and chemokines.

References

    1. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–1655.
    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine. 2001;29(7):1303–1310.
    1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine. 2003;348(16):1546–1554.
    1. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Critical Care Medicine. 2007;35(5):1244–1250.
    1. Anel R, Kumar A. Human endotoxemia and human sepsis: limits to the model. Critical Care. 2005;9(2):151–152.
    1. van der Poll T, Opal SM. Host-pathogen interactions in sepsis. The Lancet Infectious Diseases. 2008;8(1):32–43.
    1. Chalupka AN, Talmor D. The economics of sepsis. Critical Care Clinics. 2012;28(1):57–76.
    1. Burchardi H, Schneider H. Economic aspects of severe sepsis: a review of intensive care unit costs, cost of illness and cost effectiveness of therapy. PharmacoEconomics. 2004;22(12):793–813.
    1. Geroulanos S, Douka ET. Historical perspective of the word ‘sepsis’. Intensive Care Medicine. 2006;32(12):p. 2077.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine. 2013;41(2):580–637.
    1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine. 2003;31(4):1250–1256.
    1. Alberti C, Brun-Buisson C, Goodman SV, et al. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically III infected patients. American Journal of Respiratory and Critical Care Medicine. 2003;168(1):77–84.
    1. Alberti C, Brun-Buisson C, Chevret S, et al. Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. American Journal of Respiratory and Critical Care Medicine. 2005;171(5):461–468.
    1. Pittet D, Rangel-Frausto S, Li N, et al. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Medicine. 1995;21(4):302–309.
    1. Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Critical Care Medicine. 2004;32(3):858–873.
    1. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–891.
    1. Hansen JD, Vojtech LN, Laing KJ. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Developmental and Comparative Immunology. 2011;35(9):886–897.
    1. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 2001;345(19):1368–1377.
    1. Denk S, Perl M, Huber-Lang M. Damage- and pathogen-associated molecular patterns and alarmins: keys to sepsis? European Surgical Research. 2012;48(4):171–179.
    1. Levi M, van der Poll T. Inflammation and coagulation. Critical Care Medicine. 2010;38(supplement 2):S26–S34.
    1. Atsumi T, Cho Y, Leng L, et al. The proinflammatory cytokine macrophage migration inhibitory factor regulates glucose metabolism during systemic inflammation. The Journal of Immunology. 2007;179(8):5399–5406.
    1. Mlinar B, Marc J. New insights into adipose tissue dysfunction in insulin resistance. Clinical Chemistry and Laboratory Medicine. 2011;49(12):1925–1935.
    1. Emonts M, Sweep FCGJ, Grebenchtchikov N, et al. Association between high levels of blood macrophage migration inhibitory factor, inappropriate adrenal response, and early death in patients with severe sepsis. Clinical Infectious Diseases. 2007;44(10):1321–1328.
    1. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacology and Therapeutics. 2011;130(2):226–238.
    1. Hook KM, Abrams CS. The loss of homeostasis in hemostasis: new approaches in treating and understanding acute disseminated intravascular coagulation in critically ill patients. Clinical and Translational Science. 2012;5(1):85–92.
    1. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nature Reviews Immunology. 2006;6(11):813–822.
    1. Volk H, Reinke P, Döcke W. Clinical aspects: from systemic inflammation to ‘immunoparalysis’. Chemical Immunology. 2000;74:162–177.
    1. Germain RN. Maintaining system homeostasis: the third law of Newtonian immunology. Nature Immunology. 2012;13(10):902–906.
    1. Hotchkiss RS, Opal S. Immunotherapy for sepsis—a new approach against an ancient foe. The New England Journal of Medicine. 2010;363(1):87–89.
    1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
    1. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host and Microbe. 2008;3(6):352–363.
    1. Akira S, Takeda K. Toll-like receptor signalling. Nature Reviews Immunology. 2004;4(7):499–511.
    1. Lakhani SA, Bogue CW. Toll-like receptor signaling in sepsis. Current Opinion in Pediatrics. 2003;15(3):278–282.
    1. O’Neill LAJ. A critical role for citrate metabolism in LPS signalling. Biochemical Journal. 2011;438(3):e5–e6.
    1. Jawien J. New insights into immunological aspects of atherosclerosis. Polskie Archiwum Medycyny Wewnetrznej. 2008;118(3):127–131.
    1. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology. 2012;51(supplement 5):v3–v11.
    1. Parameswaran N, Patial S. Tumor necrosis factor-a signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression. 2010;20(2):87–103.
    1. Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines. The Scientific World Journal. 2012;2012:15 pages.756357
    1. Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. Journal of Endotoxin Research. 2004;10(4):201–222.
    1. Feldmann M, Brennan FM, Elliott M, Katsikis P, Maini RN. TNFα as a therapeutic target in rheumatoid arthritis. Circulatory Shock. 1994;43(4):179–184.
    1. Modzelewski B. The role of soluble TNF p55 and p75 receptors in the development of septic syndrome. Polski Merkuriusz Lekarski. 2003;14(79):69–72.
    1. Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. Journal of Leukocyte Biology. 2008;83(3):536–545.
    1. Witsell AL, Schook LB. Tumor necrosis factor alpha is an autocrine growth regulator during macrophage differentiation. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(10):4754–4758.
    1. Dinarello CA. Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest. 1997;112(supplement 6):321S–329S.
    1. Fisher CJ, Jr., Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. The New England Journal of Medicine. 1996;334(26):1697–1702.
    1. Fong Y, Tracey KJ, Moldawer LL, et al. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1β and interleukin 6 appearance during lethal bacteremia. Journal of Experimental Medicine. 1989;170(5):1627–1633.
    1. O’Neill LAJ. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunological Reviews. 2008;226(1):10–18.
    1. Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990;348(6301):550–552.
    1. Borden EC, Chin P. Interleukin-6: a cytokine with potential diagnostic and therapeutic roles. Journal of Laboratory and Clinical Medicine. 1994;123(6):824–829.
    1. Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1β: a study on IL- 6-deficient mice. Journal of Experimental Medicine. 1996;183(1):311–316.
    1. Kopf M, Baumann H, Freer G, et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994;368(6469):339–342.
    1. Nijsten MWN, Hack CE, Helle M, Ten Duis HJ, Klasen HJ, Aarden LA. Interleukin-6 and its relation to the humoral immune response and clinical parameters in burned patients. Surgery. 1991;109(6):761–767.
    1. Papanicolaou DA, Wilder RL, Manolagas SC, Chrousos GP. The pathophysiologic roles of interleukin-6 in human disease. Annals of Internal Medicine. 1998;128(2):127–137.
    1. Park JY, Pillinger MH. Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bulletin of the NYU hospital for joint diseases. 2007;65(supplement 1):S4–S10.
    1. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. Journal of Applied Physiology. 2005;98(4):1154–1162.
    1. Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Medical Microbiology and Immunology. 2006;195(4):173–183.
    1. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75(1):40–47.
    1. Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. American Journal of Physiology. 2003;285(2):E433–E437.
    1. Tilg H, Dinarello CA, Mier JW. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunology Today. 1997;18(9):428–432.
    1. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83(1):113–118.
    1. van der Poll T, Levi M, Hack CE, et al. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. Journal of Experimental Medicine. 1994;179(4):1253–1259.
    1. Xiao LZ, Topley N, Ito T, Phillips A. Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β1 signaling. The Journal of Biological Chemistry. 2005;280(13):12239–12245.
    1. Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends in Immunology. 2012;33(11):571–577.
    1. Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. Journal of Experimental Medicine. 1998;187(1):129–134.
    1. Estaquier J, Idziorek T, Zou W, et al. T helper type 1/T helper type 2 cytokines and T cell death: preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. Journal of Experimental Medicine. 1995;182(6):1759–1767.
    1. Puccetti P, Belladonna ML, Grohmann U. Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Critical Reviews in Immunology. 2002;22(5-6):373–390.
    1. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology. 2003;3(2):133–146.
    1. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annual Review of Immunology. 1997;15:749–795.
    1. Calandra T, Baumgartner J-D, Grau GE, et al. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-α, and interferon-γ in the serum of patients with septic shock. Journal of Infectious Diseases. 1990;161(5):982–987.
    1. Flohé SB, Agrawal H, Flohé S, Rani M, Bangen JM, Schade FU. Diversity of interferon γ and granulocyte-macrophage colony-stimulating factor in restoring immune dysfunction of dendritic cells and macrophages during polymicrobial sepsis. Molecular Medicine. 2008;14(5-6):247–256.
    1. Leentjens J, Kox M, Koch RM, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. American Journal of Respiratory and Critical Care Medicine. 2012;186(9):838–845.
    1. Okamura H, Kashiwamura S, Tsutsui H, et al. Regulation of interferon-gamma production by IL-12 and IL-18. Current Opinion in Immunology. 1998;10(3):259–264.
    1. Wheelock EF. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science. 1965;149(3681):310–311.
    1. Bernhagen J, Calandra T, Mitchell RA, et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature. 1993;365(6448):756–759.
    1. Bernhagen J, Krohn R, Lue H, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine. 2007;13(5):587–596.
    1. Bucala R, Donnelly SC. Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity. 2007;26(3):281–285.
    1. Calandra T, Bernhagen J, Metz CN, et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(6544):68–71.
    1. Calandra T, Bernhagen J, Mitchell RA, Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. Journal of Experimental Medicine. 1994;179(6):1895–1902.
    1. Calandra T, Echtenacher B, Le Roy D, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nature Medicine. 2000;6(2):164–170.
    1. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nature Reviews Immunology. 2003;3(10):791–800.
    1. Leng L, Wang W, Roger T, et al. Glucocorticoid-induced MIF expression by human CEM T cells. Cytokine. 2009;48(3):177–185.
    1. Merk M, Mitchell RA, Endres S, Bucala R. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine. 2012;59(1):10–17.
    1. Mitchell RA, Liao H, Chesney J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(1):345–350.
    1. Roger T, Chanson A, Knaup-Reymond M, Calandra T. Macrophage migration inhibitory factor promotes innate immune responses by suppressing glucocorticoid-induced expression of mitogen-activated protein kinase phosphatase-1. European Journal of Immunology. 2005;35(12):3405–3413.
    1. Malefyt RDW, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. Journal of Experimental Medicine. 1991;174(5):1209–1220.
    1. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. The Journal of Immunology. 1991;147(11):3815–3822.
    1. Latifi SQ, O’Riordan MA, Levine AD. Interleukin-10 controls the onset of irreversible septic shock. Infection and Immunity. 2002;70(8):4441–4446.
    1. Seitz M, Loetscher P, Dewald B, Towbin H, Gallati H, Baggiolini M. Interleukin-10 differentially regulates cytokine inhibitor and chemokine release from blood mononuclear cells and fibroblasts. European Journal of Immunology. 1995;25(4):1129–1132.
    1. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. The New England Journal of Medicine. 2000;342(18):1350–1358.
    1. Bogdan C, Nathan C. Modulation of macrophage function by transforming growth factor β, interleukin-4, and interleukin-10. Annals of the New York Academy of Sciences. 1993;685:713–739.
    1. Marie C, Cavaillon JM, Losser MR. Elevated levels of circulating transforming growth factor-beta 1 in patients with the sepsis syndrome. Annals of internal medicine. 1996;125(6):520–521.
    1. Pellacani A, Wiesel P, Razavi S, et al. Down-regulation of high mobility group-I(Y) protein contributes to the inhibition of nitric-oxide synthase 2 by transforming growth factor-β1. The Journal of Biological Chemistry. 2001;276(2):1653–1659.
    1. Sporn MB, Roberts AB. Transforming growth factor-β: multiple actions and potential clinical applications. Journal of the American Medical Association. 1989;262(7):938–941.
    1. Turner M, Chantry D, Katsikis P, Berger A, Brennan FM, Feldmann M. Induction of the interleukin 1 receptor antagonist protein by transforming growth factor-β . European Journal of Immunology. 1991;21(7):1635–1639.
    1. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–1172.
    1. Seder RA, Paul WE, Davis MM, de st. Groth BF. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. Journal of Experimental Medicine. 1992;176(4):1091–1098.
    1. Cavaillon J-M, Munoz C, Fitting C, Misset B, Carlet J. Circulating cytokines: the tip of the iceberg? Circulatory Shock. 1992;38(2):145–152.
    1. Blackwell TS, Christman JW. Sepsis and cytokines: current status. British Journal of Anaesthesia. 1996;77(1):110–117.
    1. Aikawa N. Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults. Nippon Geka Gakkai Zasshi. 1996;97(9):771–777.
    1. Junger WG, Hoyt DB, Liu FC, Loomis WH, Coimbra R. Immunosuppression after endotoxin shock: the result of multiple anti-inflammatory factors. Journal of Trauma. 1996;40(5):702–709.
    1. Tang BM, Huang SJ, McLean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Critical Care. 2010;14(6, article R237)
    1. Hack CE, Aarden LA, Thijs LG. Role of cytokines in sepsis. Advances in Immunology. 1997;66:101–195.
    1. van der Poll T, van Deventer SJH. Cytokines and anticytokines in the pathogenesis of sepsis. Infectious Disease Clinics of North America. 1999;13(2):413–426.
    1. Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature. Nature Immunology. 2010;11(11, article 973)
    1. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier J, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology. 2011;7(1):33–42.
    1. Lewis M, Tartaglia LA, Lee A, et al. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(7):2830–2834.
    1. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Journal of Pathology. 2004;202(2):145–156.
    1. Selby P, Hobbs S, Viner C, et al. Tumour necrosis factor in man: clinical and biological observations. British Journal of Cancer. 1987;56(6):803–808.
    1. Sherman ML, Spriggs DR, Arthur KA, Imamura K, Frei E, III, Kufe DW. Recombinant human tumor necrosis factor administered as a five-day continuous infusion in cancer patients: phase I toxicity and effects on lipid metabolism. Journal of Clinical Oncology. 1988;6(2):344–350.
    1. van der Poll T, Buller HR, ten Cate H, et al. Activation of coagulation after administration of tumor necrosis factor to normal subjects. The New England Journal of Medicine. 1990;322(23):1622–1627.
    1. Tewari A, Buhles WC, Jr., Starnes HF., Jr. Preliminary report: effects of interleukin-1 on platelet counts. The Lancet. 1990;336(8717):712–714.
    1. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77(8):1627–1652.
    1. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, DInarello CA. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. The Journal of Clinical Investigation. 1988;81(4):1162–1172.
    1. Cannon JG, Tompkins RG, Gelfand JA, et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. Journal of Infectious Diseases. 1990;161(1):79–84.
    1. Hesse DG, Tracey KJ, Fong Y, et al. Cytokine appearance in human endotoxemia and primate bacteremia. Surgery Gynecology and Obstetrics. 1988;166(2):147–153.
    1. Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating tumor necrosis factor after endotoxin administration. The New England Journal of Medicine. 1988;318(23):1481–1486.
    1. Suffredini AF, Fromm RE, Parker MM, et al. The cardiovascular response of normal humans to the administration of endotoxin. The New England Journal of Medicine. 1989;321(5):280–287.
    1. Fahlman C, Jacobsen FW, Veiby OP, McNiece IK, Blomhoff HK, Jacobsen SEW. Tumor necrosis factor-α (TNF-α) potently enhances in vitro macrophage production from primitive murine hematopoietic progenitor cells in combination with stem cell factor and interleukin-7: novel stimulatory role of p55 TNF receptors. Blood. 1994;84(5):1528–1533.
    1. Conte D, Holcik M, Lefebvre CA, et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Molecular and Cellular Biology. 2006;26(2):699–708.
    1. Nakae H, Endo S, Inada K, Takakuwa T, Kasai T. Changes in adhesion molecule levels in sepsis. Research Communications in Molecular Pathology and Pharmacology. 1996;91(3):329–338.
    1. Shimaoka M, Park EJ. Advances in understanding sepsis. European Journal of Anaesthesiology. 2008;25(42):146–153.
    1. Spinas GA, Keller U, Brockhaus M. Release of soluble receptors for tumor necrosis factor (TNF) in relation to circulating TNF during experimental endotoxinemia. The Journal of Clinical Investigation. 1992;90(2):533–536.
    1. Kuhns DB, Alvord WG, Gallin JI. Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. Journal of Infectious Diseases. 1995;171(1):145–152.
    1. Ertel W, Scholl FA, Gallati H, et al. Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Archives of Surgery. 1994;129(12):1330–1337.
    1. Gardlund B, Sjolin J, Nilsson A, Roll M, Wickerts C-J, Wretlind B. Plasma levels of cytokines in primary septic shock in humans: correlation with disease severity. Journal of Infectious Diseases. 1995;172(1):296–301.
    1. Goldie AS, Fearon KCH, Ross JA, et al. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. Journal of the American Medical Association. 1995;274(2):172–177.
    1. Fischer E, Marano MA, Van Zee KJ, et al. Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. The Journal of Clinical Investigation. 1992;89(5):1551–1557.
    1. Creasey AA, Stevens P, Kenney J, et al. Endotoxin and cytokine profile in plasma of baboons challenged with lethal and sublethal Escherichia coli . Circulatory Shock. 1991;33(2):84–91.
    1. Damas P, Ledoux D, Nys M, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Annals of Surgery. 1992;215(4):356–362.
    1. Cruickshank AM, Fraser WD, Burns HJG, van Damme J, Shenkin A. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clinical Science. 1990;79(2):161–165.
    1. Hoch RC, Rodriguez R, Manning T, et al. Effects of accidental trauma on cytokine and endotoxin production. Critical Care Medicine. 1993;21(6):839–845.
    1. Hack CE, De Groot ER, Felt-Bersma RJF, et al. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74(5):1704–1710.
    1. Borrelli E, Roux-Lombard P, Grau GE, et al. Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Critical Care Medicine. 1996;24(3):392–397.
    1. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. Journal of Experimental Medicine. 1989;169(1):333–338.
    1. Preiser J, Schmartz D, van der Linden P, et al. Interleukin-6 administration has no acute hemodynamic or hematologic effect in the dog. Cytokine. 1991;3(1):1–4.
    1. Kushner I, Rzewnicki DL. The acute phase response: general aspects. Bailliere’s Clinical Rheumatology. 1994;8(3):513–530.
    1. Cuzzocrea S, Sautebin L, De Sarro G, et al. Role of IL-6 in the pleurisy and lung injury caused by carrageenan. The Journal of Immunology. 1999;163(9):5094–5104.
    1. Cuzzocrea S, De Sarro G, Costantino G, et al. Role of interleukin-6 in a non-septic shock model induced by zymosan. European Cytokine Network. 1999;10(2):191–203.
    1. Pathan N, Hemingway CA, Alizadeh AA, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. The Lancet. 2004;363(9404):203–209.
    1. Yoshizawa K, Naruto M, Ida N. Injection time of interleukin-6 determines fatal outcome in experimental endotoxin shock. Journal of Interferon and Cytokine Research. 1996;16(12):995–1000.
    1. Xing Z, Gauldie J, Cox G, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. The Journal of Clinical Investigation. 1998;101(2):311–320.
    1. Remick DG, Bolgos G, Copeland S, Siddiqui J. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity. 2005;73(5):2751–2757.
    1. Jones LL, Vignali DAA. Molecular interactions within the IL-6/IL-12 cytokine/receptor superfamily. Immunologic Research. 2011;51(1):5–14.
    1. Steinhauser ML, Hogaboam CM, Lukacs NW, Strieter RM, Kunkel SL. Multiple roles for IL-12 in a model of acute septic peritonitis. The Journal of Immunology. 1999;162(9):5437–5443.
    1. Zisman DA, Kunkel SL, Strieter RM, et al. Anti-interleukin-12 therapy protects mice in lethal endotoxemia but impairs bacterial clearance in murine Escherichia coli peritoneal sepsis. Shock. 1997;8(5):349–356.
    1. Jansen PM, Kraan TCTMV, de Jong IW, et al. Release of interleukin-12 in experimental Escherichia coli septic shock in baboons: relation to plasma levels of interleukin-10 and interferon-γ . Blood. 1996;87(12):5144–5151.
    1. Moreno SE, Alves-Filho JC, Alfaya TM, da Silva JS, Ferreira SH, Liew FY. IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. The Journal of Immunology. 2006;177(5):3218–3224.
    1. Weighardt H, Heidecke C, Westerholt A, et al. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis. Annals of Surgery. 2002;235(4):560–567.
    1. Stanilova SA, Karakolev ZT, Dimov GS, et al. High interleukin 12 and low interleukin 10 production after in vitro stimulation detected in sepsis survivors. Intensive Care Medicine. 2005;31(3):401–407.
    1. Wu H, Shih C, Lin C, Hua C, Chuang D. Serial increase of IL-12 response and human leukocyte antigen-DR expression in severe sepsis survivors. Critical Care. 2011;15(5, article R224)
    1. Wang Z, Reiner SL, Zheng S, Dalton DK, Locksley RM. CD4+ effector cells default to the Th2 pathway in interferon γ-deficient mice infected with Leishmania major. Journal of Experimental Medicine. 1994;179(4):1367–1371.
    1. Huang S, Hendriks W, Althage A, et al. Immune response in mice that lack the interferon-γ receptor. Science. 1993;259(5102):1742–1745.
    1. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated tuberculosis in interferon γ gene-disrupted mice. Journal of Experimental Medicine. 1993;178(6):2243–2247.
    1. Müller U, Steinhoff U, Reis LFL, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264(5167):1918–1921.
    1. Heinzel FP. The role of IFN-γ in the pathology of experimental endotoxemia. The Journal of Immunology. 1990;145(9):2920–2924.
    1. Car BD, Eng VM, Schnyder B, et al. Interferon γ receptor deficient mice are resistant to endotoxic shock. Journal of Experimental Medicine. 1994;179(5):1437–1444.
    1. Munoz C, Carlet J, Fitting C, Misset B, Bleriot J-P, Cavaillon J-M. Dysregulation of in vitro cytokine production by monocytes during sepsis. The Journal of Clinical Investigation. 1991;88(5):1747–1754.
    1. Ferguson NR, Galley HF, Webster NR. T helper cell subset ratios in patients with severe sepsis. Intensive Care Medicine. 1999;25(1):106–109.
    1. Rich AR, Lewis MR. The nature of allergy in tuberculosis as revealed by tissue culture studies. Bulletin of the Johns Hopkins Hospital. 1932;50:115–131.
    1. Calandra T, Spiegel LA, Metz CN, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(19):11383–11388.
    1. Merk M, Baugh J, Zierow S, et al. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. The Journal of Immunology. 2009;182(11):6896–6906.
    1. Roger T, David J, Glauser MP, Calandra T. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature. 2001;414(6866):920–924.
    1. Shi X, Leng L, Wang T, et al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity. 2006;25(4):595–606.
    1. Leng L, Metz CN, Fang Y, et al. MIF signal transduction initiated by binding to CD74. Journal of Experimental Medicine. 2003;197(11):1467–1476.
    1. Rossi AG, Haslett C, Hirani N, et al. Human circulating eosinophils secrete macrophage migration inhibitory factor (MIF): potential role in asthma. The Journal of Clinical Investigation. 1998;101(12):2869–2874.
    1. Mikulowska A, Metz CN, Bucala R, Holmdahl R. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type II-lnduced arthritis in mice. The Journal of Immunology. 1997;158(11):5514–5517.
    1. Lin S, Yu X, Chen Y, et al. De novo expression of macrophage migration inhibitory factor in atherogenesis in rabbits. Circulation Research. 2000;87(12):1202–1208.
    1. de Jong YP, Abadia-Molina AC, Satoskar AR, et al. Development of chronic colitis is dependent on the cytokine MIF. Nature Immunology. 2001;2(11):1061–1066.
    1. Al-Abed Y, Dabideen D, Aljabari B, et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. The Journal of Biological Chemistry. 2005;280(44):36541–36544.
    1. Bozza M, Satoskar AR, Lin G, et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. Journal of Experimental Medicine. 1999;189(2):341–346.
    1. Matsuda N, Nishihira J, Takahashi Y, Kemmotsu O, Hattori Y. Role of macrophage migration inhibitory factor in acute lung injury in mice with acute pancreatitis complicated by endotoxemia. American Journal of Respiratory Cell and Molecular Biology. 2006;35(2):198–205.
    1. Kobayashi S, Nishihira J, Watanabe S, Todo S. Prevention of lethal acute hepatic failure by antimacrophage migration inhibitory factor antibody in mice treated with bacille Calmette-Guerin and lipopolysaccharide. Hepatology. 1999;29(6):1752–1759.
    1. Garner LB, Willis MS, Carlson DL, et al. Macrophage migration inhibitory factor is a cardiac-derived myocardial depressant factor. American Journal of Physiology. 2003;285(6):H2500–H2509.
    1. Miller EJ, Li J, Leng L, et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature. 2008;451(7178):578–582.
    1. Merk M, Zierow S, Leng L, et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF) Proceedings of the National Academy of Sciences of the United States of America. 2011;108(34):E577–E585.
    1. Beishuizen A, Thijs LG, Haanen C, Vermes I. Macrophage migration inhibitory factor and hypothalamo-pituitary-adrenal function during critical illness. Journal of Clinical Endocrinology and Metabolism. 2001;86(6):2811–2816.
    1. Brenner T, Hofer S, Rosenhagen C, et al. Macrophage migration inhibitory factor (MIF) and manganese superoxide dismutase (MnSOD) as early predictors for survival in patients with severe sepsis or septic shock. Journal of Surgical Research. 2010;164(1):e163–e171.
    1. Yende S, Angus DC, Kong L, et al. The influence of macrophage migration inhibitory factor gene polymorphisms on outcome from community-acquired pneumonia. The FASEB Journal. 2009;23(8):2403–2411.
    1. Renner P, Roger T, Bochud P, et al. A functional microsatellite of the macrophage migration inhibitory factor gene associated with meningococcal disease. The FASEB Journal. 2012;26(2):907–916.
    1. Doernberg S, Schaaf B, Dalhoff K, et al. Association of macrophage migration inhibitory factor (MIF) polymorphisms with risk of meningitis from Streptococcus pneumoniae . Cytokine. 2011;53(3):292–294.
    1. Awandare GA, Martinson JJ, Were T, et al. MIF (Macrophage Migration Inhibitory Factor) promoter polymorphisms and susceptibility to severe malarial anemia. Journal of Infectious Diseases. 2009;200(4):629–637.
    1. Howard M, Muchamuel T, Andrade S, Menon S. Interleukin 10 protects mice from lethal endotoxemia. Journal of Experimental Medicine. 1993;177(4):1205–1208.
    1. Howard M, O'Garra A. Biological properties of interleukin 10. Journal of Clinical Immunology. 1992;12(4):239–247.
    1. Song GY, Chung C, Chaudry IH, Ayala A. What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery. 1999;126(2):378–383.
    1. van der Poll T, Marchant A, Buurman WA, et al. Endogenous IL-10 protects mice from death during septic peritonitis. The Journal of Immunology. 1995;155(11):5397–5401.
    1. Zeng L, Gu W, Chen K, et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Critical Care. 2009;13(6, article R188)
    1. Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO. Transforming growth factor-β1 induces antigen-specific unresponsiveness in naive T cells. Immunological Investigations. 1997;26(4):459–472.
    1. Wan YY, Flavell RA. TGF-β and regulatory T cell in immunity and autoimmunity. Journal of Clinical Immunology. 2008;28(6):647–659.
    1. Randow F, Syrbe U, Meisel C, et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor β . Journal of Experimental Medicine. 1995;181(5):1887–1892.
    1. Perrella MA, Hsieh CM, Lee WS, et al. Arrest of endotoxin-induced hypotension by transforming growth factor beta1. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(5):2054–2059.
    1. Pender BS. Transforming growth factor β1 alters rat peritoneal macrophage mediator production and improves survival during endotoxic shock. European Cytokine Network. 1996;7(2):137–142.
    1. Zanotti S, Kumar A, Kumar A. Cytokine modulation in sepsis and septic shock. Expert Opinion on Investigational Drugs. 2002;11(8):1061–1075.
    1. Knapp S, Thalhammer F, Locker GJ, et al. Prognostic value of MIP-1α, TGF-β2, sELAM-1, and sVCAM-1 in patients with gram-positive sepsis. Clinical Immunology and Immunopathology. 1998;87(2):139–144.
    1. Kumar A, Kumar A, Paladugu B, Mensing J, Parrillo JE. Transforming growth factor-β1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-α, interleukin-1β, and human septic shock serum. Critical Care Medicine. 2007;35(2):358–364.
    1. Zamorano J, Wang HY, Wang L, Pierce JH, Keegan AD. IL-4 protects cells from apoptosis via the insulin receptor substrate pathway and a second independent signaling pathway. The Journal of Immunology. 1996;157(11):4926–4934.
    1. Yanagida M, Fukamachi H, Ohgami K, et al. Effects of T-helper 2-type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on the survival of cultured human mast cells. Blood. 1995;86(10):3705–3714.
    1. Lutz MB, Schnare M, Menges M, et al. Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. The Journal of Immunology. 2002;169(7):3574–3580.
    1. Baumhofer JM, Beinhauer BG, Wang JE, et al. Gene transfer with IL-4 and IL-13 improves survival in lethal endotoxemia in the mouse and ameliorates peritoneal macrophages immune competence. European Journal of Immunology. 1998;28(2):610–615.
    1. Hultgren O, Kopf M, Tarkowski A. Outcome of Staphylococcus aureus-triggered sepsis and arthritis in IL-4-deficient mice depends on the genetic background of the host. European Journal of Immunology. 1999;29(8):2400–2405.
    1. Wu HP, Wu CL, Chen CK, et al. The interleukin-4 expression in patients with severe sepsis. Journal of Critical Care. 2008;23(4):519–524.
    1. Gu W, Zeng L, Zhang L, et al. Association of interleukin 4-589T/C Polymorphism with TH1 and TH2 bias and sepsis in chinese major trauma patients. Journal of Trauma. 2011;71(6):1583–1587.
    1. Fisher CJ, Jr., Opal SM, Dhainaut JF, et al. Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. The CB0006 Sepsis Syndrome Study Group. Critical Care Medicine. 1993;21(3):318–327.
    1. Opal SM, Fisher CJ, Jr., Dhainaut JA, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Critical Care Medicine. 1997;25(7):1115–1124.
    1. Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Critical Care Medicine. 1997;25(7):1095–1100.
    1. Cohen J, Carlet J. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Critical Care Medicine. 1996;24(9):1431–1440.
    1. Parrish WR, Gallowitsch-Puerta M, Czura CJ, Tracey KJ. Experimental therapeutic strategies for severe sepsis: mediators and mechanisms. Annals of the New York Academy of Sciences. 2008;1144:210–236.
    1. Ulloa L, Tracey KJ. The “cytokine profile”: a code for sepsis. Trends in Molecular Medicine. 2005;11(2):56–63.
    1. Lubetsky JB, Dios A, Han J, et al. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. The Journal of Biological Chemistry. 2002;277(28):24976–24982.
    1. Leng L, Chen L, Fan J, et al. A small-molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in Lupus-Prone NZB/NZW F1 and MRL/lpr mice. The Journal of Immunology. 2011;186(1):527–538.
    1. Arjona A, Foellmer HG, Town T, et al. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. The Journal of Clinical Investigation. 2007;117(10):3059–3066.
    1. Kerschbaumer RJ, Rieger M, Völkel D, et al. Neutralization of macrophage migration inhibitory factor (MIF) by fully human antibodies correlates with their specificity for the β-sheet structure of MIF. The Journal of Biological Chemistry. 2012;287(10):7446–7455.
    1. Hare AA, Leng L, Gandavadi S, et al. Optimization of N-benzyl-benzoxazol-2-ones as receptor antagonists of macrophage migration inhibitory factor (MIF) Bioorganic and Medicinal Chemistry Letters. 2010;20(19):5811–5814.
    1. Kraemer S, Lue H, Zernecke A, et al. MIF-chemokine receptor interactions in atherogenesis are dependent on an N-loop-based 2-site binding mechanism. The FASEB Journal. 2011;25(3):894–906.
    1. Presneill JJ, Harris T, Stewart AG, Cade JF, Wilson JW. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. American Journal of Respiratory and Critical Care Medicine. 2002;166(2):138–143.
    1. Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Pinsky MR. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in nonneutropenic patients. Chest. 2005;127(6):2139–2150.
    1. Polk HC, Jr., Cheadle WG, Livingston DH, et al. A randomized prospective clinical trial to determine the efficacy of interferon-γ in severely injured patients. American Journal of Surgery. 1992;163(2):191–196.
    1. Esmon CT. The interactions between inflammation and coagulation. British Journal of Haematology. 2005;131(4):417–430.
    1. Esmon CT. The protein C pathway. Chest. 2003;124(supplement 3):26S–32S.
    1. Neyrinck AP, Liu KD, Howard JP, Matthay MA. Protective mechanisms of activated protein C in severe inflammatory disorders. British Journal of Pharmacology. 2009;158(4):1034–1047.
    1. Vera PL, Wolfe TE, Braley AE, Meyer-Siegler KL. Thrombin induces macrophage migration inhibitory factor release and upregulation in urothelium: a possible contribution to bladder inflammation. PLoS ONE. 2010;5(12)e15904
    1. Galley HF, El Sakka NE, Webster NR, Lowes DA, Cuthbertson BH. Activated protein C inhibits chemotaxis and interleukin-6 release by human neutrophils without affecting other neutrophil functions. British Journal of Anaesthesia. 2008;100(6):815–819.
    1. Okajima K. Regulation of inflammatory responses by natural anticoagulants. Immunological Reviews. 2001;184:258–274.
    1. Schmidt-Supprian M, Murphy C, White B, et al. Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. European Cytokine Network. 2000;11(3):407–413.
    1. Bilbault P, Lavaux T, Launoy A, et al. Influence of drotrecogin alpha (activated) infusion on the variation of Bax/Bcl-2 and Bax/Bcl-xl ratios in circulating mononuclear cells: a cohort study in septic shock patients. Critical Care Medicine. 2007;35(1):69–75.
    1. da Silva FP, Nizet V. Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis. 2009;14(4):509–521.
    1. Taylor FB, Jr., Chang A, Esmon CT. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. The Journal of Clinical Investigation. 1987;79(3):918–925.
    1. Bernard GR, Ely EW, Wright TJ, et al. Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Critical Care Medicine. 2001;29(11):2051–2059.
    1. Bernard GR, Vincent J, Laterre P, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England Journal of Medicine. 2001;344(10):699–709.
    1. Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Critical Care Medicine. 2008;36(1):296–327.
    1. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. The New England Journal of Medicine. 2012;366(22):2055–2064.

Source: PubMed

3
Abonnieren