Metabolic profiling predicts response to anti-tumor necrosis factor α therapy in patients with rheumatoid arthritis

Sabrina R Kapoor, Andrew Filer, Martin A Fitzpatrick, Benjamin A Fisher, Peter C Taylor, Christopher D Buckley, Iain B McInnes, Karim Raza, Stephen P Young, Sabrina R Kapoor, Andrew Filer, Martin A Fitzpatrick, Benjamin A Fisher, Peter C Taylor, Christopher D Buckley, Iain B McInnes, Karim Raza, Stephen P Young

Abstract

Objective: Anti-tumor necrosis factor (anti-TNF) therapies are highly effective in rheumatoid arthritis (RA) and psoriatic arthritis (PsA), but a significant number of patients exhibit only a partial or no therapeutic response. Inflammation alters local and systemic metabolism, and TNF plays a role in this. We undertook this study to determine if the patient's metabolic fingerprint prior to therapy could predict responses to anti-TNF agents.

Methods: Urine was collected from 16 RA patients and 20 PsA patients before and during therapy with infliximab or etanercept. Urine metabolic profiles were assessed using nuclear magnetic resonance spectroscopy. Discriminating metabolites were identified, and the relationship between metabolic profiles and clinical outcomes was assessed.

Results: Baseline urine metabolic profiles discriminated between RA patients who did or did not have a good response to anti-TNF therapy according to European League Against Rheumatism criteria, with a sensitivity of 88.9% and a specificity of 85.7%, with several metabolites contributing (in particular histamine, glutamine, xanthurenic acid, and ethanolamine). There was a correlation between baseline metabolic profiles and the magnitude of change in the Disease Activity Score in 28 joints from baseline to 12 months in RA patients (P = 0.04). In both RA and PsA, urinary metabolic profiles changed between baseline and 12 weeks of anti-TNF therapy. Within the responders, urinary metabolite changes distinguished between etanercept and infliximab treatment.

Conclusion: The clear relationship between urine metabolic profiles of RA patients at baseline and their response to anti-TNF therapy may allow development of novel approaches to the optimization of therapy. Differences in metabolic profiles during treatment with infliximab and etanercept in RA and PsA may reflect distinct mechanisms of action.

Copyright © 2013 by the American College of Rheumatology.

Figures

Figure 1
Figure 1
Metabolic fingerprinting distinguishes between baseline urine samples from rheumatoid arthritis (RA) patients who have good responses to tumor necrosis factor (TNF) antagonists at 12 months and those who do not. A, One-dimensional 1H nuclear magnetic resonance (NMR) spectra of baseline urine samples from RA patients with (solid circles) or without (open circles) a good response to TNF antagonists at 12 months were subjected to supervised analysis (partial least-squares discriminant analysis [PLS-DA]). The sample number is plotted against the score in (contribution to) latent variable 1 (LV1), and the percent value on the y-axis shows the proportion of the total variance in the data captured by LV1 in the PLS-DA model. The horizontal dashed line at zero segregates samples with positive and negative scores. B, Weightings plot of the PLS-DA model of spectral data from baseline urine samples from the RA patients who did or did not have a good response at 12 months highlights major regions of the spectra that distinguish between the sample groups. The major discriminating peaks are labeled with their chemical shift (in parts per million) on the x-axis and LV weighting on the y-axis. The percent value on the y-axis indicates the proportion of the total variance in the data captured by LV1. C, One-dimensional 1H NMR spectra of baseline urine samples from RA patients with (solid circles) or without (open circles) a good response to TNF antagonists at 12 months were subjected to principal components analysis using GALGO analysis. The percent values on the x and y axes indicate the proportion of the variance captured by each principal component (PC1 and PC2).
Figure 2
Figure 2
Metabolic fingerprinting enables identification of metabolites that are altered after treatment with TNF antagonists in patients with a good response. A, One-dimensional 1H NMR spectra of urine samples obtained at baseline (open circles) and 12 weeks (solid circles) from RA patients with a good response to TNF antagonists at 12 months were subjected to supervised analysis (PLS-DA). The score in LV1 is plotted against the score in LV2, and the percent values on the x and y axes show the proportions of the total variance in the data captured by LV1 and LV2 in the PLS-DA model. The horizontal dashed lines at zero segregate samples with positive and negative scores. B, Weightings plot of the PLS-DA model of spectral data from urine samples obtained from RA patients who responded to TNF antagonists highlights major regions of the spectra that distinguish between the baseline and 12-week samples. The major discriminating peaks are labeled with their chemical shift (in parts per million) on the x-axis and LV weighting on the y-axis. The percent value on the y-axis indicates the proportion of the total variance in the data captured by LV1. C, One-dimensional 1H NMR spectra of urine samples obtained at baseline (open circles) and 12 weeks (solid circles) from psoriatic arthritis (PsA) patients with a good response to TNF antagonists at 12 months were subjected to supervised analysis (PLS-DA). The score in LV1 is plotted against the score in LV2, and the percent values on the x and y axes show the proportions of the total variance in the data captured by LV1 and LV2 in the PLS-DA model. The horizontal dashed lines at zero segregate samples with positive and negative scores. D, Weightings plot of the PLS-DA model of spectral data from urine samples from PsA patients who responded to TNF antagonists highlights major regions of the spectra that distinguish between the baseline and 12-week samples. The major discriminating peaks are labeled with their chemical shift (in parts per million) on the x-axis and LV weighting on the y-axis. The percent value on the y-axis indicates the proportion of the total variance in the data captured by LV1. See Figure 1 for other definitions.
Figure 3
Figure 3
Metabolic fingerprinting of urine samples from RA patients and psoriatic arthritis (PsA) patients. A, One-dimensional 1H NMR spectra of urine samples obtained 12 weeks after treatment with infliximab (open circles) or etanercept (solid circles) from RA and PsA patients with a good response to treatment were subjected to supervised analysis (PLS-DA). The score in LV1 is plotted against the score in LV2, and the percent values on the x and y axes show the proportions of the total variance in the data captured by LV1 and LV2 in the PLS-DA model. The horizontal dashed lines at zero segregate samples with positive and negative scores. B, Weightings plot of the PLS-DA model of spectral data from urine samples obtained after treatment with infliximab or etanercept from RA and PsA patients with a good response at 12 months highlights major regions of the spectra that distinguish between the sample groups. The major discriminating peaks are labeled with their chemical shift (in parts per million) on the x-axis and LV weighting on the y-axis. The percent value on the y-axis indicates the proportion of the total variance in the data captured by LV1. See Figure 1 for other definitions.

References

    1. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, et al. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet. 1999;354:1932–9.
    1. Spencer-Green G. Etanercept (Enbrel): update on therapeutic use. Ann Rheum Dis. 2000;59(Suppl 1):i46–9.
    1. Keystone EC, Kavanaugh AF, Sharp JT, Tannenbaum H, Hua Y, Teoh LS, et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti–tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 2004;50:1400–11.
    1. Furst DE, Keystone EC, Braun J, Breedveld FC, Burmester GR, De Benedetti F, et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2010. Ann Rheum Dis. 2011;70(Suppl 1):i2–36.
    1. Van Gestel AM, Prevoo ML, van 't Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis: comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism criteria. Arthritis Rheum. 1996;39:34–40.
    1. Bennett AN, Peterson P, Zain A, Grumley J, Panayi G, Kirkham B. Adalimumab in clinical practice: outcome in 70 rheumatoid arthritis patients, including comparison of patients with and without previous anti-TNF exposure. Rheumatology (Oxford) 2005;44:1026–31.
    1. Bazzani C, Filippini M, Caporali R, Bobbio-Pallavicini F, Favalli EG, Marchesoni A, et al. Anti-TNF α therapy in a cohort of rheumatoid arthritis patients: clinical outcomes. Autoimmun Rev. 2009;8:260–5.
    1. Rau R. Have traditional DMARDs had their day? Effectiveness of parenteral gold compared to biologic agents. Clin Rheumatol. 2005;24:189–202.
    1. Summers GD, Metsios GS, Stavropoulos-Kalinoglou A, Kitas GD. Rheumatoid cachexia and cardiovascular disease. Nat Rev Rheumatol. 2010;6:445–51.
    1. Summers GD, Deighton CM, Rennie MJ, Booth AH. Rheumatoid cachexia: a clinical perspective. Rheumatology (Oxford) 2008;47:1124–31.
    1. Lin HM, Edmunds SJ, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn's disease. J Proteome Res. 2009;8:2045–57.
    1. Bezabeh T, Somorjai RL, Smith IC. MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magn Reson Chem. 2009;47:S54–61.
    1. Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–51.
    1. Young SP, Nessim M, Falciani F, Trevino V, Banerjee SP, Scott RA, et al. Metabolomic analysis of human vitreous humor differentiates ocular inflammatory disease. Mol Vis. 2009;15:1210–7.
    1. Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, et al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool? NMR Biomed. 2010;23:123–32.
    1. Pan XY, Wilson M, Mirbahai L, McConville C, Arvanitis TN, Griffin JL, et al. In vitro metabonomic study detects increases in UDP-GlcNAc and UDP-GalNAc, as early phase markers of cisplatin treatment response in brain tumor cells. J Proteome Res. 2011;10:3493–500.
    1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu JD, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.
    1. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002;8:1439–44. [published erratum appears in Nat Med 2003;9:477]
    1. Schicho R, Nazyrova A, Shaykhutdinov R, Duggan G, Vogel HJ, Storr M. Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by 1H NMR spectroscopy. J Proteome Res. 2010;9:6265–73.
    1. Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem. 2008;80:5524–31.
    1. Williams HR, Cox IJ, Walker DG, North BV, Patel VM, Marshall SE, et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am J Gastroenterol. 2009;104:1435–44.
    1. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.
    1. Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight–joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38:44–8.
    1. Fries JF, Spitz P, Kraines RG, Holman HR. Measurement of patient outcome in arthritis. Arthritis Rheum. 1980;23:137–45.
    1. Van Gestel AM, Haagsma CJ, Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41:1845–50.
    1. Clegg DO, Reda DJ, Mejias E, Cannon GW, Weisman MH, Taylor T, et al. Comparison of sulfasalazine and placebo in the treatment of psoriatic arthritis: a Department of Veterans Affairs cooperative study. Arthritis Rheum. 1996;39:2013–20.
    1. Viant MR, Ludwig C, Rhodes S, Guenther UL, Allaway D. Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics. 2007;3:453–63.
    1. Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310:943–8.
    1. Liu M, Wang GR, Liu TZ, Tsai KJ. Improved fluorometric quantification of urinary xanthurenic acid. Clin Chem. 1996;42:397–401.
    1. Chauchard F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemometr Intell Lab Syst. 2004;71:141–50.
    1. Trevino V, Falciani F. GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics. 2006;22:1154–6.
    1. Pedersen LM, Nordin H, Svensson B, Bliddal H. Microalbuminuria in patients with rheumatoid arthritis. Ann Rheum Dis. 1995;54:189–92.
    1. Niederstadt C, Happ T, Tatsis E, Schnabel A, Steinhoff J. Glomerular and tubular proteinuria as markers of nephropathy in rheumatoid arthritis. Rheumatology (Oxford) 1999;38:28–33.
    1. Ramadan Z, Jacobs D, Grigorov M, Kochhar S. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta. 2006;68:1683–91.
    1. Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excretion of N-methylhistamine as a marker of disease activity in inflammatory bowel disease. Am J Gastroenterol. 2002;97:3071–7.
    1. Buckley MG, Walters C, Wong WM, Cawley MI, Ren S, Schwartz LB, et al. Mast cell activation in arthritis: detection of α- and β-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (Lond) 1997;93:363–70.
    1. Tak PP, Smeets TJ, Daha MR, Kluin PM, Meijers KA, Brand R, et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 1997;40:217–25.
    1. Stifel FB, Herman RH. Histidine metabolism. Am J Clin Nutr. 1971;24:207–17.
    1. Goodman MN. Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 1991;260:E727–30.
    1. Sitton NG, Dixon JS, Bird HA, Wright V. Serum biochemistry in rheumatoid arthritis, seronegative arthropathies, osteoarthritis, SLE and normal subjects. Br J Rheumatol. 1987;26:131–5.
    1. Gao P, Lu C, Zhang F, Sang P, Yang D, Li X, et al. Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis. Analyst. 2008;133:1214–20.
    1. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, et al. Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis. 2010;69:1227–31.
    1. Hyrich KL, Watson KD, Silman AJ, Symmons DP, and the BRS Biologics Register Predictors of response to anti-TNF-α therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology (Oxford) 2006;45:1558–65.
    1. Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68:69–74.
    1. Takeuchi T, Miyasaka N, Tatsuki Y, Yano T, Yoshinari T, Abe T, et al. Baseline tumour necrosis factor α levels predict the necessity for dose escalation of infliximab therapy in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70:1208–15.
    1. Hueber W, Tomooka BH, Batliwalla F, Li W, Monach PA, Tibshirani RJ, et al. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis. Arthritis Res Ther. 2009;11:R76.

Source: PubMed

3
Abonnieren